forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_permutation.py
254 lines (224 loc) · 12.5 KB
/
test_permutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright 2021 AlQuraishi Laboratory
# Dingquan Yu @ EMBL-Hamburg Kosinski group
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
import unittest
from openfold.utils.multi_chain_permutation import (pad_features, get_least_asym_entity_or_longest_length,
compute_permutation_alignment, split_ground_truth_labels,
merge_labels)
class TestPermutation(unittest.TestCase):
def setUp(self):
"""
create fake input structure features
and rotation matrices
"""
theta = math.pi / 4
device = 'cpu'
self.rotation_matrix_z = torch.tensor([
[math.cos(theta), -math.sin(theta), 0],
[math.sin(theta), math.cos(theta), 0],
[0, 0, 1]
], device=device)
self.rotation_matrix_x = torch.tensor([
[1, 0, 0],
[0, math.cos(theta), -math.sin(theta)],
[0, math.sin(theta), math.cos(theta)],
], device=device)
self.rotation_matrix_y = torch.tensor([
[math.cos(theta), 0, math.sin(theta)],
[0, 1, 0],
[-math.sin(theta), 1, math.cos(theta)],
], device=device)
self.chain_a_num_res = 9
self.chain_b_num_res = 13
# below create default fake ground truth structures for a hetero-pentamer A2B3
self.residue_index = list(
range(self.chain_a_num_res)) * 2 + list(range(self.chain_b_num_res)) * 3
self.num_res = self.chain_a_num_res * 2 + self.chain_b_num_res * 3
self.asym_id = torch.tensor([[1] * self.chain_a_num_res + [2] * self.chain_a_num_res + [
3] * self.chain_b_num_res + [4] * self.chain_b_num_res + [5] * self.chain_b_num_res], device=device)
self.sym_id = self.asym_id
self.entity_id = torch.tensor([[1] * (self.chain_a_num_res * 2) + [2] * (self.chain_b_num_res * 3)],
device=device)
def test_1_selecting_anchors(self):
batch = {
'asym_id': self.asym_id,
'sym_id': self.sym_id,
'entity_id': self.entity_id,
'seq_length': torch.tensor([57])
}
anchor_gt_asym, anchor_pred_asym = get_least_asym_entity_or_longest_length(
batch, batch['asym_id'])
anchor_gt_asym = int(anchor_gt_asym)
anchor_pred_asym = {int(i) for i in anchor_pred_asym}
expected_anchors = {1, 2}
expected_non_anchors = {3, 4, 5}
self.assertIn(anchor_gt_asym, expected_anchors)
self.assertNotIn(anchor_gt_asym, expected_non_anchors)
# Check that predicted anchors are within expected anchor set
self.assertEqual(anchor_pred_asym, expected_anchors & anchor_pred_asym)
self.assertEqual(set(), anchor_pred_asym & expected_non_anchors)
def test_2_permutation_pentamer(self):
"""
Test the permutation results on a pentamer A2B3, in which protein A has 9 residues
and protein B has 13 residues.
Expected outputs:
Only protein A should be selected as an anchor thus, in the output list, either [(0,1), (1,0)] or [(0,0), (1,1)] are allowed
The 3 chains from protein B should ALWAYS be aligned in a way that predicted b1 to be aligned with ground truth b1, pred b2 to ground truth b2
as shown below:
predicted structure: a2 - a1 - b2 - b3 - b1
indexes in the predicted list: 0 1 2 3 4
ground truth structure: a1 - a2 - b1 - b2 - b3
indexes in the ground truth list: 0 1 2 3 4
then the 2 protein A chains are free to be aligned by either order, thus either [(0,1),(1,0)] or [(0,0),(1,1)] is valid.
However, the 3 protein B chains should be strictly aligned in the following order:
[(2,3), (3,4), (4,2)], regardless of how protein A chains are aligned.
Therefore, the only 2 correct permutations are :
[(0, 1), (1, 0), (2, 3), (3, 4), (4, 2)] and
[(0, 0), (1, 1), (2, 3), (3, 4), (4, 2)]
"""
batch = {
'asym_id': self.asym_id,
'sym_id': self.sym_id,
'entity_id': self.entity_id,
'seq_length': torch.tensor([57]),
'aatype': torch.randint(21, size=(1, 57))
}
batch['asym_id'] = batch['asym_id'].reshape(1, self.num_res)
batch["residue_index"] = torch.tensor([self.residue_index])
# create fake ground truth atom positions
chain_a1_pos = torch.randint(15, (self.chain_a_num_res, 3 * 37),
dtype=torch.float).reshape(1, self.chain_a_num_res, 37, 3)
chain_a2_pos = torch.matmul(chain_a1_pos, self.rotation_matrix_x) + 10
chain_b1_pos = torch.randint(low=15, high=30, size=(self.chain_b_num_res, 3 * 37),
dtype=torch.float).reshape(1, self.chain_b_num_res, 37, 3)
chain_b2_pos = torch.matmul(chain_b1_pos, self.rotation_matrix_y) + 10
chain_b3_pos = torch.matmul(torch.matmul(
chain_b1_pos, self.rotation_matrix_z), self.rotation_matrix_x) + 30
# Below permutate predicted chain positions
# here the b2 chain from the ground truth is deliberately put in b1 chain's position, and predicted b3 chain to b2's position
# and predicted b1 chain to b3's position
pred_atom_position = torch.cat(
(chain_a2_pos, chain_a1_pos, chain_b2_pos, chain_b3_pos, chain_b1_pos), dim=1)
pred_atom_mask = torch.ones((1, self.num_res, 37))
out = {
'final_atom_positions': pred_atom_position,
'final_atom_mask': pred_atom_mask
}
true_atom_position = torch.cat(
(chain_a1_pos, chain_a2_pos, chain_b1_pos, chain_b2_pos, chain_b3_pos), dim=1)
true_atom_mask = torch.cat((torch.ones((1, self.chain_a_num_res, 37)),
torch.ones((1, self.chain_a_num_res, 37)),
torch.ones((1, self.chain_b_num_res, 37)),
torch.ones((1, self.chain_b_num_res, 37)),
torch.ones((1, self.chain_b_num_res, 37))), dim=1)
batch['all_atom_positions'] = true_atom_position
batch['all_atom_mask'] = true_atom_mask
aligns, per_asym_residue_index = compute_permutation_alignment(out, batch,
batch)
expected_asym_residue_index = {
1: torch.tensor(list(range(self.chain_a_num_res))),
2: torch.tensor(list(range(self.chain_a_num_res))),
3: torch.tensor(list(range(self.chain_b_num_res))),
4: torch.tensor(list(range(self.chain_b_num_res))),
5: torch.tensor(list(range(self.chain_b_num_res)))
}
chain_a_permutated_chain_b_permutated = [
(0, 1), (1, 0), (2, 3), (3, 4), (4, 2)]
chain_a_not_permutated_chain_b_permutated = [
(0, 0), (1, 1), (2, 3), (3, 4), (4, 2)]
chain_a_permutated_chain_b_not_permuated = [
(0, 1), (1, 0), (2, 2), (3, 3), (4, 4)]
chain_a_not_permutated_chain_b_not_permuated = [
(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
# test on the permutation alignments
self.assertIn(aligns, [chain_a_permutated_chain_b_permutated,
chain_a_not_permutated_chain_b_permutated])
self.assertNotIn(aligns, [chain_a_permutated_chain_b_not_permuated,
chain_a_not_permutated_chain_b_not_permuated])
# test on the per_aysm_residue_index
for k, v in expected_asym_residue_index.items():
self.assertTrue(torch.equal(v, per_asym_residue_index[k]))
def test_3_merge_labels(self):
nres_pad = 325 - 57 # suppose the cropping size is 325
batch = {
'asym_id': self.asym_id,
'sym_id': self.sym_id,
'entity_id': self.entity_id,
'aatype': torch.randint(21, size=(1, 57)),
'seq_length': torch.tensor([57])
}
batch['asym_id'] = batch['asym_id'].reshape(1, 57)
batch["residue_index"] = torch.tensor([self.residue_index])
# create fake ground truth atom positions
chain_a1_pos = torch.randint(15, (self.chain_a_num_res, 3 * 37),
dtype=torch.float).reshape(1, self.chain_a_num_res, 37, 3)
chain_a2_pos = torch.matmul(chain_a1_pos, self.rotation_matrix_x) + 10
chain_b1_pos = torch.randint(low=15, high=30, size=(self.chain_b_num_res, 3 * 37),
dtype=torch.float).reshape(1, self.chain_b_num_res, 37, 3)
chain_b2_pos = torch.matmul(chain_b1_pos, self.rotation_matrix_y) + 10
chain_b3_pos = torch.matmul(torch.matmul(
chain_b1_pos, self.rotation_matrix_z), self.rotation_matrix_x) + 30
# Below permutate predicted chain positions
pred_atom_position = torch.cat(
(chain_a2_pos, chain_a1_pos, chain_b2_pos, chain_b3_pos, chain_b1_pos), dim=1)
pred_atom_mask = torch.ones((1, self.num_res, 37))
pred_atom_position = pad_features(
pred_atom_position, nres_pad, pad_dim=1)
pred_atom_mask = pad_features(pred_atom_mask, nres_pad, pad_dim=1)
out = {
'final_atom_positions': pred_atom_position,
'final_atom_mask': pred_atom_mask
}
true_atom_position = torch.cat(
(chain_a1_pos, chain_a2_pos, chain_b1_pos, chain_b2_pos, chain_b3_pos), dim=1)
true_atom_mask = torch.cat((torch.ones((1, self.chain_a_num_res, 37)),
torch.ones((1, self.chain_a_num_res, 37)),
torch.ones((1, self.chain_b_num_res, 37)),
torch.ones((1, self.chain_b_num_res, 37)),
torch.ones((1, self.chain_b_num_res, 37))), dim=1)
batch['all_atom_positions'] = true_atom_position
batch['all_atom_mask'] = true_atom_mask
# Below create a fake_input_features
fake_input_features = {
'asym_id': pad_features(self.asym_id, nres_pad, pad_dim=1),
'sym_id': pad_features(self.sym_id, nres_pad, pad_dim=1),
'entity_id': pad_features(self.entity_id, nres_pad, pad_dim=1),
'aatype': torch.randint(21, size=(1, 325)),
'seq_length': torch.tensor([57])
}
fake_input_features['asym_id'] = fake_input_features['asym_id'].reshape(
1, 325)
fake_input_features["residue_index"] = pad_features(
torch.tensor(self.residue_index).reshape(1, 57), nres_pad, pad_dim=1)
fake_input_features['all_atom_positions'] = pad_features(
true_atom_position, nres_pad, pad_dim=1)
fake_input_features['all_atom_mask'] = pad_features(
true_atom_mask, nres_pad=nres_pad, pad_dim=1)
# NOTE
# batch: simulates ground_truth features
# fake_input_features: simulates the data that are going be used as input for model.forward(fake_input_features)
# out: simulates the output of model.forward(fake_input_features)
aligns, per_asym_residue_index = compute_permutation_alignment(out,
fake_input_features,
batch)
labels = split_ground_truth_labels(batch)
labels = merge_labels(per_asym_residue_index, labels, aligns,
original_nres=batch['aatype'].shape[-1])
self.assertTrue(torch.equal(
labels['residue_index'], batch['residue_index']))
expected_permutated_gt_pos = torch.cat((chain_a2_pos, chain_a1_pos, chain_b2_pos, chain_b3_pos, chain_b1_pos),
dim=1)
self.assertTrue(torch.equal(
labels['all_atom_positions'], expected_permutated_gt_pos))