-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_dataset.py
599 lines (534 loc) · 20.6 KB
/
build_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import os
import random
import shutil
from itertools import permutations, combinations
from multiprocessing import Pool
from pathlib import Path
from typing import List
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import typer
from plotnine import ggplot, aes, geom_jitter, stat_summary, theme, element_text
from utils._anscombe import anscombe
from utils.utils import time_of_day_
from matplotlib import rcParams
# Set matplotlib to use Times New Roman
rcParams['font.family'] = 'serif'
rcParams['font.serif'] = ['Times New Roman']
def plot_heatmap(out_dir, datetime_xaxis, matrix, y_axis, filename, title="title"):
fig = go.Figure(
data=go.Heatmap(
z=matrix,
x=datetime_xaxis,
y=y_axis,
colorscale="Viridis",
showscale=True,
)
)
fig.update_layout(
# title=title,
autosize=True,
xaxis_title="Time (1 min bin)",
yaxis_title="Cats",
font=dict(
family="Times New Roman", # This sets the font family to Times New Roman
size=12, # You can also specify the size here if necessary
color="black" # And the font color
)
)
output = out_dir / "heatmap"
output.mkdir(parents=True, exist_ok=True)
filepath = output / filename
fig.write_html(str(filepath))
print(filepath)
# filepath = output / (filename.split('.')[0] + '.png')
# fig.write_image(str(filepath), width=3*500, height=500, scale=1) # Save as 2K image
# print(filepath)
def create_activity_graph(
datetime,
activity,
folder,
filename,
title=None,
sub_folder="training_sets_time_domain_graphs",
):
fig = plt.figure(figsize=(6, 4))
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%d/%m/%Y"))
plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=2))
# plt.setp(plt.gca().xaxis.get_majorticklabels(), 'rotation', 90)
# plt.bar(range(0, len(activity)), activity)
plt.bar(
datetime, activity[0 : len(datetime)], align="edge", width=0.01
)
plt.xlabel("time(1min bin)")
plt.ylabel("Activity count")
plt.xticks(rotation=45)
fig.suptitle(
title,
x=0.5,
y=0.95,
horizontalalignment="center",
verticalalignment="top",
fontsize=10,
)
plt.tight_layout()
path = folder / sub_folder
Path(path).mkdir(parents=True, exist_ok=True)
filepath = f"{path}/{filename}"
print(filepath)
fig.savefig(filepath)
def create_training_sets(run_id, activity, timestamp, metadata, max_sample, n_peak, w_size, thresh, out_dir, filename):
meta_names = []
training_set = []
training_set.extend(activity)
for n, t in enumerate(timestamp):
training_set.append(t)
meta_names.append(f"peak{n}_datetime")
training_set.append(metadata["label"])
meta_names.append("label")
training_set.append(metadata["id"])
meta_names.append("id")
training_set.append(metadata["date"])
meta_names.append("date")
training_set.append(metadata["health"]) # health
meta_names.append("health")
training_set.append(metadata["target"])
meta_names.append("target")
training_set.append(metadata["age"])
meta_names.append("age")
training_set.append(metadata["name"])
meta_names.append("name")
training_set.append(metadata["mobility_score"])
meta_names.append("mobility_score")
training_set.append(max_sample)
meta_names.append("max_sample")
training_set.append(n_peak)
meta_names.append("n_peak")
training_set.append(w_size)
meta_names.append("w_size")
training_set.append(thresh)
meta_names.append("n_top")
out_dir.mkdir(parents=True, exist_ok=True)
filepath = out_dir / filename
filepath = filepath.as_posix()
training_str_flatten = (
str(training_set).strip("[]").replace(" ", "").replace("None", "NaN")
)
# print(
# f"[{run_id}] sample size is {len(training_set)}: {training_str_flatten[0:50]}.....{training_str_flatten[-50:]}"
# )
with open(filepath, "a") as outfile:
outfile.write(training_str_flatten)
outfile.write("\n")
return filepath, meta_names
def get_cat_meta(output_dir, cat_id, output_fig=True, individual_to_ignore = ["MrDudley", "Oliver_F", "Lucy"]):
# print("getting health classification for cat id=%d" % cat_id)
file = Path(os.getcwd()) / "metadata.csv"
df = pd.read_csv(file, sep=",", nrows=55)
df_ = df.copy()
#individual_to_ignore = ["MrDudley", "Oliver_F", "Lucy"]
df_ = df_[~df_["Cat"].isin(individual_to_ignore)]
if output_fig:
for col in ["Age", "Mobility_Score"]:
df_["Status"] = df_["Status"].replace(0, "No DJD")
df_["Status"] = df_["Status"].replace(1, "DJD")
g = (
ggplot(df_) # defining what data to use
+ aes(
x="Status", y=col, color="Status"
) # defining what variable to use
+ geom_jitter() # defining the type of plot to use
+ stat_summary(geom="crossbar", color="black", width=0.2)
+ theme(
subplots_adjust={"right": 0.82}, axis_text_x=element_text(angle=45, hjust=1, family='Times New Roman'), legend_position='none',
text=element_text(family='Times New Roman')
)
)
fig = g.draw()
ax = fig.gca()
ax.set_title(f"Cat {col}", fontdict={'family': 'Times New Roman'})
ax.set_ylabel("Mobility Score", fontdict={'family': 'Times New Roman'})
if col == "Age":
ax.set_ylabel("Age(years)", fontdict={'family': 'Times New Roman'})
filename = f"{col}.png"
output_dir.mkdir(parents=True, exist_ok=True)
filepath = output_dir / filename
# if not filepath.exists():
print(filepath)
fig.set_size_inches(3, 4)
fig.tight_layout()
fig.savefig(filepath, dpi=500)
df = df[pd.notnull(df["DJD_ID"])]
df["DJD_ID"] = df["DJD_ID"].astype(int)
df["Status"] = df["Status"].astype(int)
cat_meta = df.loc[df["DJD_ID"] == cat_id]
return {
"id": cat_meta["DJD_ID"].item(),
"name": cat_meta["Cat"].item(),
"age": cat_meta["Age"].item(),
"target": -1,
"health": cat_meta["Status"].item(),
"mobility_score": cat_meta["Mobility_Score%"].item(),
"label": cat_meta["Status"].item(),
}
def build_n_peak_samples(run_id, tot, n_peak, rois, rois_timestamp, max_sample, thresh):
print(f"[{run_id}/{tot}] number of peaks is 1, sample shape is{rois.shape}")
idxs_peaks = np.arange(len(rois))
combinat = list(combinations(idxs_peaks, n_peak))
try:
rois_idxs = random.sample(combinat, k=max_sample)
except ValueError as e:
print(e)
print(f"There are less samples than max_sample={max_sample}")
rois_idxs = combinat
#build augmented sample by concatenating permutations of peaks
n_peak_samples = []
for idxs in rois_idxs:
new_samples = []
timestamps = []
for i in idxs:
sample = rois[i]
new_samples.append(sample)
timestamp = str(rois_timestamp[i])
timestamps.append(timestamp)
activity = np.concatenate(new_samples)
s = activity.tolist() + timestamps
n_peak_samples.append(s)
n_peak_samples = np.array(n_peak_samples)
print(f"[{run_id}/{tot}] number of peaks is {n_peak}, sample shape is{n_peak_samples.shape}")
if len(n_peak_samples) < len(rois):
print("combination could not increase the number of samples")
return None
return n_peak_samples
def find_region_of_interest(run_id, tot, timestamp, activity, w_size, thresh):
print(f"[{run_id}/{tot}] find_region_of_interest...")
rois = []
rois_timestamp = []
df = pd.DataFrame(activity, columns=["count"])
df["index"] = df.index
df_sorted = df.sort_values(by=["count"], ascending=False)
n_top = thresh
# n_top = int(len(activity) * thresh / 100)
df_sorted = df_sorted.iloc[0:n_top, :]
for index, row in df_sorted.iterrows():
i = row["index"]
if row["count"] <= 0:
print("negative count!")
continue
w = int(w_size/2)
w_idx = list(range(i - w, i + w))
if sum(n < 0 for n in w_idx) > 0 or i + w_size > len(
activity
): # make sure that the window is in bound
continue
roi = activity[w_idx]
rois.append(roi)
if timestamp is not None:
rois_timestamp.append(timestamp[i])
rois = np.array(rois).astype(np.int32)
return rois, rois_timestamp
def format_raw_data(df, bin):
try:
df.columns = [
"epoch",
"day",
"elapsed_seconds",
"date",
"time",
"activity_counts",
"steps",
"event_marker",
]
format = "%d-%b-%y %H:%M:%S"
except ValueError as e: # some of the raw data is sampled at the millisecond resolution
#print(e)
df.columns = [
"epoch",
"day",
"elapsed_seconds",
"date",
"time",
"activity_counts",
]
format = "%d-%b-%Y %H:%M:%S.%f"
df["date_time"] = df["date"].map(str) + " " + df["time"]
columns_titles = [
"epoch",
"day",
"elapsed_seconds",
"activity_counts",
"date_time",
]
df = df.reindex(columns=columns_titles)
df["date_time"] = pd.to_datetime(df["date_time"], format=format)
df.sort_values(by="date_time")
#df["hour"] = df["date_time"].dt.hour
#df["weekday"] = np.where(df["date_time"].dt.dayofweek < 5, True, False)
#df["day_light"] = df["hour"].apply(check_if_hour_daylight)
df = df.resample(bin, on="date_time").sum()
df = df.reset_index()
if bin == "T":
df = df.iloc[: 1440 * 12, :] # clip data to study duration 12 days
if bin == "S":
df = df.iloc[: 86400 * 12, :]
df = df.set_index("date_time")
#df.reset_index(level=0, inplace=True)
#df["color"] = df.apply(attribute_color, axis=1)
df["epoch"] = df["epoch"].astype(np.int32)
df["day"] = df["day"].astype(np.int8)
df["elapsed_seconds"] = df["elapsed_seconds"].astype(np.int32)
df["activity_counts"] = df["activity_counts"].astype(np.int32)
df["day"] = df.index.day
df['hour'] = df.index.hour
df['time_of_day'] = df['hour'].apply(time_of_day_)
return df
def main(time_of_day, cat_data, out_dir, bin, w_size, thresh, n_peak, out_heatmap, max_sample, run_id, tot, use_age_as_feature=False):
print(f"[{run_id}] progress[{run_id}/{tot}]...")
datetime_list, datetime_list_w = [], []
activity_list, activity_list_w = [], []
individual_list, individual_list_w = [], []
cpt, total = 0, 0
for i, df in enumerate(cat_data):
print(f"[{run_id}/{tot}] progress[{i}/{len(cat_data)}]...")
if time_of_day != 'All':
df = df[df["time_of_day"] == time_of_day]
cat_id = df["cat_id"].values[0]
activity = df["activity_counts"].values
timestamp = df.index
cat_meta = get_cat_meta(out_dir, cat_id)
cat_meta["date"] = df.index.strftime("%d/%m/%Y").values[0]
if use_age_as_feature:
rois = [[cat_meta["age"]]]
rois_timestamp = [[]]
else:
rois = []
if w_size is not None:
rois, rois_timestamp = find_region_of_interest(run_id, tot, timestamp, activity, w_size, thresh)
rois = build_n_peak_samples(run_id, tot, n_peak, rois, rois_timestamp, max_sample, thresh)
if rois is None:
return
rois_timestamp = rois[:, -n_peak:]
rois = rois[:, :-n_peak].astype(int)
if bin == "T":
create_activity_graph(
df.index.values,
activity,
out_dir,
f"{cat_id}_{i}.png",
title=f"{cat_id}",
)
if out_heatmap:
activity_list.append(activity)
datetime_list.append(df.index.values)
individual_list.append(f"{cat_id}")
for roi, timestamp in zip(rois, rois_timestamp):
_, meta_names = create_training_sets(run_id, roi, timestamp, cat_meta, max_sample, n_peak, w_size, thresh, out_dir, "samples.csv")
if out_heatmap:
activity_list_w.append(roi)
datetime_list_w.append(df.index.values[0 : len(roi)])
individual_list_w.append(f"{cat_id} {i}")
total += 1
pd.DataFrame(meta_names).to_csv(out_dir / "meta_columns.csv", index=False)
if out_heatmap:
print("create heatmap...")
df_herd = pd.DataFrame(activity_list)
datetime_xaxis = max(datetime_list, key=len)
datetime_xaxis = pd.to_datetime(datetime_xaxis)
# plot_heatmap(
# out_dir,
# datetime_xaxis,
# df_herd.values,
# individual_list,
# "cats.html",
# title="Cats activity",
# )
plot_heatmap(
out_dir,
datetime_xaxis,
np.log(anscombe(df_herd.values)),
individual_list,
"cats_log_anscombe.html",
title="Cats activity (LOG(ANSCOMBE())",
)
if out_heatmap and len(activity_list_w) > 0:
df_herd_w = pd.DataFrame(activity_list_w)
datetime_xaxis_w = max(datetime_list_w, key=len)
datetime_xaxis_w = pd.to_datetime(datetime_xaxis_w)
plot_heatmap(
out_dir,
datetime_xaxis_w,
df_herd_w.values,
individual_list_w,
"samples.html",
title=f"Cats activity samples total samples={total}",
)
plot_heatmap(
out_dir,
datetime_xaxis_w,
np.log(anscombe(df_herd_w.values)),
individual_list_w,
"samples_log_anscombe.html",
title=f"Cats activity samples total samples={total} (LOG(ANSCOMBE())",
)
del df_herd_w
del activity_list_w
del activity_list
del datetime_list
del individual_list
return meta_names
def get_cat_data(data_dir, bin, subset=None):
print("Loading cat data...")
if bin not in ["S", "T"]:
print(f"bin value must be 'S' or 'T'. {bin} is not supported!")
files = sorted(data_dir.glob("*.csv"))
if subset is not None:
files = files[0:subset]
# new = []
# for f in files:
# if 11 == int(f.name.split('_')[0]) or 13 == int(f.name.split('_')[0]):
# new.append(f)
# if 36 == int(f.name.split('_')[0]) or 75 == int(f.name.split('_')[0]):
# new.append(f)
# files = new
dfs = []
gender = ""
for i, file in enumerate(files):
try:
print(f"progress[{i}/{len(files)}]...")
print(f"reading file: {file}")
cat_id = int(file.stem.split("_")[0])
cat_name = file.stem.split("_")[1]
if "maisie" not in str(file).lower():
continue
individual_to_ignore = ["MrDudley", "Oliver_F", "Lucy"]
if cat_name in individual_to_ignore:
continue
cat_meta = get_cat_meta(data_dir, cat_id, individual_to_ignore=individual_to_ignore)
df = pd.read_csv(file, sep=",", nrows=1, header=None)
df_ = pd.read_csv(file, sep=",", nrows=23, header=1, error_bad_lines=False)
gender = df_[df_["Filename:"] == "Gender:"].values[0][1]
weight = df_[df_["Filename:"] == "Weight:"].values[0][1]
#df = format_raw_data(df, bin)
df["health"] = cat_meta["health"]
df["age"] = cat_meta["age"]
df["cat_id"] = cat_id
df["mob_score"] = cat_meta['mobility_score']
df["gender"] = gender
df["weight"] = weight
df = df[["cat_id", "age", "gender", "mob_score", "health", "weight"]]
dfs.append(df)
except Exception as e:
print(e)
return dfs
def run(
data_dir: Path = typer.Option(
..., exists=False, file_okay=False, dir_okay=True, resolve_path=True
),
out_dir: Path = typer.Option(
..., exists=False, file_okay=False, dir_okay=True, resolve_path=True
),
dataset_path: Path = Path("dataset_test8.csv"),
bin: str = "S",
w_size: List[int] = [15],
threshs: List[int] = [10],
n_peaks: List[int] = [1],
day_windows: List[str] = ['All'],
out_heatmap: bool = False,
use_age_as_feature: bool = False,
max_sample: int = 100,
n_job: int = 2,
):
"""Script which builds dataset ready for ml
Args:\n
data_dir: Activity data directory.\n
out_dir: Output directory.\n
bin: Activity bin size (activity count will be summed), 'T' for minutes and 'S' for seconds .\n
w_size: Sample lengh (if bin is S, 60 give 60 seconds sample length).\n
thresh: Top n highest values.\n
n_peaks: Number of peaks in dataset.\n
out_heatmap: Enables output of visualisation heatmaps.\n
max_sample: Maximum number of samples per cats when using n_peaks > 1.\n
n_job: Number of threads to use.
"""
#pool = Pool(processes=n_job)
tot = len(w_size) * len(n_peaks) * len(threshs) * len(day_windows)
cpt = 0
print(f"dataset_path={dataset_path}")
if dataset_path.exists():
print(f"loading {dataset_path}")
df_data = pd.read_csv(dataset_path, index_col="date_time")
df_data.index = pd.to_datetime(df_data.index)
cat_data = [group for _, group in df_data.groupby(["cat_id"])]
else:
cat_data = get_cat_data(data_dir, bin)
#dataset_path = f"{dataset_path.name}_{bin}.csv"
print(f"saving {dataset_path}...")
df_meta = pd.concat(cat_data)
df_meta.to_csv(dataset_path, index=True)
df_meta = df_meta.drop("weight", axis=1)
print(df_meta.to_latex())
print("done.")
datasets = []
for t in threshs:
for w in w_size:
for n_peak in n_peaks:
for time_of_day in day_windows:
if n_peak > t:
print(f"top {t} peaks must be >= n_peak {n_peak} for permutation of {n_peak} peaks. setting top ranks peak to {n_peak}")
t = n_peak
dirname = f"{max_sample}_{t}_{str(w).zfill(3)}_{str(n_peak).zfill(3)}"
if time_of_day is not None:
dirname = f"{time_of_day}_{max_sample}_{t}_{str(w).zfill(3)}_{str(n_peak).zfill(3)}"
if use_age_as_feature:
dirname = f"0_0_0_0_0"
out_dataset_dir = out_dir / dirname / "dataset"
datasets.append(out_dataset_dir / "samples.csv")
if out_dataset_dir.exists():
shutil.rmtree(out_dataset_dir) # purge dataset if already created
# pool.apply_async(
# main,
# (cat_data, out_dataset_dir, bin, w, t, n_peak, out_heatmap, max_sample, cpt, tot),
# ), #TODO Fix multiprocessing doesn't work for large amount of data (dataset ids ~3GB)
main(time_of_day, cat_data, out_dataset_dir, bin, w, t, n_peak, out_heatmap, max_sample, cpt, tot, use_age_as_feature)
cpt += 1
# pool.close()
# pool.join()
return datasets
# def test():
#
# n_peak = 7
# rois = []
# for i in range(10):
# rois.append([f"sample {i+1}"])
# rois = np.array(rois)
#
# idxs_peaks = np.arange(len(rois))
# combinat = list(combinations(idxs_peaks, n_peak))
# try:
# rois_idxs = random.sample(combinat, k=100)
# except ValueError as e:
# print(e)
# print(f"There are less samples than max_sample={100}")
# rois_idxs = combinat
#
# #build augmented sample by concatenating permutations of peaks
# n_peak_samples = []
# for idxs in rois_idxs:
# new_samples = []
# for i in idxs:
# sample = rois[i]
# new_samples.append(sample)
# activity = np.concatenate(new_samples)
# s = activity.tolist()
# n_peak_samples.append(s)
# n_peak_samples = np.array(n_peak_samples)
# print(f"{len(rois)} samples before combination")
# #print(rois)
# print(f"{len(n_peak_samples)} samples after combination")
# #print(n_peak_samples)
if __name__ == "__main__":
run(Path("E:\Cats"), Path("E:\Cats"))
#typer.run(run)