forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpthread.c
140 lines (111 loc) · 3.03 KB
/
pthread.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <pthread.h>
#include "include/ksched.h"
#include "include/wait_q.h"
static void ready_one_thread(_wait_q_t *wq)
{
struct k_thread *th = _unpend_first_thread(wq);
if (th) {
_abort_thread_timeout(th);
_ready_thread(th);
}
}
static int cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut, int timeout)
{
__ASSERT(mut->sem->count == 0, "");
int ret, key = irq_lock();
mut->sem->count = 1;
ready_one_thread(&mut->sem->wait_q);
_pend_current_thread(&cv->wait_q, timeout);
ret = _Swap(key);
/* FIXME: this extra lock (and the potential context switch it
* can cause) could be optimized out. At the point of the
* signal/broadcast, it's possible to detect whether or not we
* will be swapping back to this particular thread and lock it
* (i.e. leave the lock variable unchanged) on our behalf.
* But that requires putting scheduler intelligence into this
* higher level abstraction and is probably not worth it.
*/
pthread_mutex_lock(mut);
return ret == -EAGAIN ? -ETIMEDOUT : ret;
}
/* This implements a "fair" scheduling policy: at the end of a POSIX
* thread call that might result in a change of the current maximum
* priority thread, we always check and context switch if needed.
* Note that there is significant dispute in the community over the
* "right" way to do this and different systems do it differently by
* default. Zephyr is an RTOS, so we choose latency over
* throughput. See here for a good discussion of the broad issue:
*
* https://blog.mozilla.org/nfroyd/2017/03/29/on-mutex-performance-part-1/
*/
static void swap_or_unlock(int key)
{
/* API madness: use __ not _ here. The latter checks for our
* preemption state, but we want to do a switch here even if
* we can be preempted.
*/
if (!_is_in_isr() && __must_switch_threads()) {
_Swap(key);
} else {
irq_unlock(key);
}
}
int pthread_cond_signal(pthread_cond_t *cv)
{
int key = irq_lock();
ready_one_thread(&cv->wait_q);
swap_or_unlock(key);
return 0;
}
int pthread_cond_broadcast(pthread_cond_t *cv)
{
int key = irq_lock();
while (!sys_dlist_is_empty(&cv->wait_q)) {
ready_one_thread(&cv->wait_q);
}
swap_or_unlock(key);
return 0;
}
int pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut)
{
return cond_wait(cv, mut, K_FOREVER);
}
int pthread_cond_timedwait(pthread_cond_t *cv, pthread_mutex_t *mut,
const struct timespec *to)
{
return cond_wait(cv, mut, _ts_to_ms(to));
}
int pthread_mutex_trylock(pthread_mutex_t *m)
{
int key = irq_lock(), ret = -EBUSY;
if (m->sem->count) {
m->sem->count = 0;
ret = 0;
}
irq_unlock(key);
return ret;
}
int pthread_barrier_wait(pthread_barrier_t *b)
{
int key = irq_lock();
b->count++;
if (b->count >= b->max) {
b->count = 0;
while (!sys_dlist_is_empty(&b->wait_q)) {
ready_one_thread(&b->wait_q);
}
if (!__must_switch_threads()) {
irq_unlock(key);
return 0;
}
} else {
_pend_current_thread(&b->wait_q, K_FOREVER);
}
return _Swap(key);
}