-
Notifications
You must be signed in to change notification settings - Fork 680
/
Copy pathtest_linear8bitlt.py
215 lines (174 loc) · 7.48 KB
/
test_linear8bitlt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from contextlib import nullcontext
import copy
import os
import pickle
from tempfile import TemporaryDirectory
import pytest
import torch
import bitsandbytes as bnb
from bitsandbytes.nn.modules import Linear8bitLt
from tests.helpers import (
TRUE_FALSE,
id_formatter,
torch_load_from_buffer,
torch_save_to_buffer,
)
# contributed by Alex Borzunov, see:
# https://github.com/bigscience-workshop/petals/blob/main/tests/test_linear8bitlt.py
def test_linear_no_igemmlt():
linear = torch.nn.Linear(1024, 3072)
x = torch.randn(3, 1024, dtype=torch.half)
linear_custom = Linear8bitLt(
linear.in_features,
linear.out_features,
linear.bias is not None,
has_fp16_weights=False,
threshold=6.0,
)
linear_custom.state.force_no_igemmlt = True
linear_custom.weight = bnb.nn.Int8Params(
linear.weight.data.clone(),
requires_grad=False,
has_fp16_weights=False,
).to(linear.weight.dtype)
linear_custom.bias = linear.bias
linear_custom = linear_custom.cuda()
linear = linear.half().cuda()
x_ref = x.clone().cuda().requires_grad_(True)
x_ours = x.clone().cuda().requires_grad_(True)
fx_ref = linear(x_ref).float()
grad_proj = torch.randn_like(fx_ref)
(fx_ref * grad_proj).mean().backward()
fx_ours = linear_custom(x_ours).float()
(fx_ours * grad_proj).mean().backward()
assert linear_custom.state.CB is not None
assert not linear_custom.state.has_fp16_weights
idx = torch.isclose(fx_ref, fx_ours, atol=0.02, rtol=1e-5)
assert (idx == 0).sum().item() < fx_ref.numel() * 2.5e-4
torch.testing.assert_close(fx_ref, fx_ours, atol=0.03, rtol=1e-5)
torch.testing.assert_close(x_ref.grad, x_ours.grad, atol=0.01, rtol=1e-5)
@pytest.mark.parametrize("has_fp16_weights", TRUE_FALSE, ids=id_formatter("has_fp16_weights"))
@pytest.mark.parametrize("serialize_before_forward", TRUE_FALSE, ids=id_formatter("serialize_before_forward"))
@pytest.mark.parametrize("deserialize_before_cuda", TRUE_FALSE, ids=id_formatter("deserialize_before_cuda"))
@pytest.mark.parametrize("save_before_forward", TRUE_FALSE, ids=id_formatter("save_before_forward"))
@pytest.mark.parametrize("load_before_cuda", TRUE_FALSE, ids=id_formatter("load_before_cuda"))
def test_linear_serialization(
has_fp16_weights,
serialize_before_forward,
deserialize_before_cuda,
save_before_forward,
load_before_cuda,
):
linear = torch.nn.Linear(32, 96)
# TODO: Fallback for bad shapes
x = torch.randn(4, 32, dtype=torch.half)
# x = torch.randn(3, 32, dtype=torch.half)
linear_custom = Linear8bitLt(
linear.in_features,
linear.out_features,
linear.bias is not None,
has_fp16_weights=has_fp16_weights,
threshold=6.0,
)
linear_custom.weight = bnb.nn.Int8Params(
linear.weight.data.clone(),
requires_grad=has_fp16_weights,
has_fp16_weights=has_fp16_weights,
)
linear_custom.bias = linear.bias
linear_custom = linear_custom.cuda()
if serialize_before_forward:
state_dict_8bit = linear_custom.state_dict()
if save_before_forward:
bytes_8bit = torch_save_to_buffer(linear_custom)
x_first = x.clone().cuda().requires_grad_(True)
fx_first = linear_custom(x_first).float()
grad_proj = torch.randn_like(fx_first)
(fx_first * grad_proj).mean().backward()
if not serialize_before_forward:
state_dict_8bit = linear_custom.state_dict()
if not save_before_forward:
bytes_8bit = torch_save_to_buffer(linear_custom)
with TemporaryDirectory() as tmpdir:
state_path_8bit = os.path.join(tmpdir, "state_8bit.pth")
state_path = os.path.join(tmpdir, "state.pth")
torch.save(linear.state_dict(), state_path)
torch.save(state_dict_8bit, state_path_8bit)
if not has_fp16_weights:
assert os.path.getsize(state_path_8bit) < 0.5 * os.path.getsize(state_path)
new_state_dict = torch.load(state_path_8bit, weights_only=False)
new_linear_custom = Linear8bitLt(
linear.in_features,
linear.out_features,
linear.bias is not None,
has_fp16_weights=has_fp16_weights,
threshold=6.0,
)
if deserialize_before_cuda:
with nullcontext() if has_fp16_weights else pytest.raises(RuntimeError):
new_linear_custom.load_state_dict(new_state_dict, strict=True)
if load_before_cuda:
new_linear_custom2 = torch_load_from_buffer(bytes_8bit)
new_linear_custom = new_linear_custom.cuda()
if not deserialize_before_cuda:
new_linear_custom.load_state_dict(new_state_dict, strict=True)
if not load_before_cuda:
new_linear_custom2 = torch_load_from_buffer(bytes_8bit)
x_second = x.clone().cuda().requires_grad_(True)
fx_second = new_linear_custom(x_second).float()
(fx_second * grad_proj).mean().backward()
x_third = x.clone().cuda().requires_grad_(True)
fx_third = new_linear_custom2(x_third).float()
(fx_third * grad_proj).mean().backward()
# if 8-bit weights were loaded before .cuda, state is incorrect anyway and RuntimeError was raised
if has_fp16_weights or not deserialize_before_cuda:
assert torch.allclose(fx_first, fx_second, atol=1e-5)
assert torch.allclose(x_first.grad, x_second.grad, atol=1e-5)
assert torch.allclose(fx_first, fx_third, atol=1e-5)
assert torch.allclose(x_first.grad, x_third.grad, atol=1e-5)
@pytest.fixture
def linear8bit(requires_cuda):
linear = torch.nn.Linear(32, 96)
linear_custom = Linear8bitLt(
linear.in_features,
linear.out_features,
linear.bias is not None,
has_fp16_weights=False,
threshold=6.0,
)
linear_custom.weight = bnb.nn.Int8Params(
linear.weight.data.clone(),
requires_grad=False,
has_fp16_weights=False,
)
linear_custom.bias = linear.bias
linear_custom = linear_custom.cuda()
return linear_custom
def test_linear8bit_copy_param(linear8bit):
shallow_copy = copy.copy(linear8bit)
assert linear8bit.weight is shallow_copy.weight
assert linear8bit.bias is shallow_copy.bias
assert linear8bit.weight.data.data_ptr() == shallow_copy.weight.data.data_ptr()
def test_linear8bit_deepcopy_param(linear8bit):
deep_copy = copy.deepcopy(linear8bit)
assert linear8bit.weight is not deep_copy.weight
assert linear8bit.bias is not deep_copy.bias
assert linear8bit.weight.data.data_ptr() != deep_copy.weight.data.data_ptr()
assert torch.allclose(linear8bit.weight.data, deep_copy.weight.data)
assert linear8bit.state == deep_copy.state
# check for a bug where SCB and CB were not copied
assert deep_copy.weight.SCB is not None
assert (linear8bit.weight.SCB == deep_copy.weight.SCB).all()
assert deep_copy.weight.CB is not None
assert (linear8bit.weight.CB == deep_copy.weight.CB).all()
def test_linear8bit_serialization(linear8bit):
serialized = pickle.dumps(linear8bit)
deserialized = pickle.loads(serialized)
assert linear8bit.weight.data.data_ptr() != deserialized.weight.data.data_ptr()
assert torch.allclose(linear8bit.weight.data, deserialized.weight.data)
assert linear8bit.bias.data.data_ptr() != deserialized.bias.data.data_ptr()
assert torch.allclose(linear8bit.bias.data, deserialized.bias.data)
assert linear8bit.state == deserialized.state
# check for a bug where SCB and CB were not copied
assert (linear8bit.weight.SCB == deserialized.weight.SCB).all()
assert (linear8bit.weight.CB == deserialized.weight.CB).all()