forked from mit-pdos/xv6-public
-
Notifications
You must be signed in to change notification settings - Fork 16
/
bootother.S
78 lines (66 loc) · 3.1 KB
/
bootother.S
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include "asm.h"
# Start an Application Processor. This must be placed on a 4KB boundary
# somewhere in the 1st MB of conventional memory (APBOOTSTRAP). However,
# due to some shortcuts below it's restricted further to within the 1st
# 64KB. The AP starts in real-mode, with
# CS selector set to the startup memory address/16;
# CS base set to startup memory address;
# CS limit set to 64KB;
# CPL and IP set to 0.
#
# mp.c causes each non-boot CPU in turn to jump to start.
# mp.c puts the correct %esp in start-4, and the place to jump
# to in start-8.
.set PROT_MODE_CSEG,0x8 # code segment selector
.set PROT_MODE_DSEG,0x10 # data segment selector
.set CR0_PE_ON,0x1 # protected mode enable flag
.globl start
start:
.code16 # This runs in real mode
cli # Disable interrupts
cld # String operations increment
# Set up the important data segment registers (DS, ES, SS).
xorw %ax,%ax # Segment number zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment
# Set up the stack pointer, growing downward from 0x7000-8.
movw $start-8,%sp # Stack Pointer
# Switch from real to protected mode
# The descriptors in our GDT allow all physical memory to be accessed.
# Furthermore, the descriptors have base addresses of 0, so that the
# segment translation is a NOP, ie. virtual addresses are identical to
# their physical addresses. With this setup, immediately after
# enabling protected mode it will still appear to this code
# that it is running directly on physical memory with no translation.
# This initial NOP-translation setup is required by the processor
# to ensure that the transition to protected mode occurs smoothly.
lgdt gdtdesc # load GDT -- mandatory in protected mode
movl %cr0, %eax # turn on protected mode
orl $CR0_PE_ON, %eax #
movl %eax, %cr0 #
# CPU magic: jump to relocation, flush prefetch queue, and reload %cs
# Has the effect of just jmp to the next instruction, but simultaneous
# loads CS with $PROT_MODE_CSEG.
ljmp $PROT_MODE_CSEG, $protcseg
# We are now in 32-bit protected mode (hence the .code32)
.code32
protcseg:
# Set up the protected-mode data segment registers
movw $PROT_MODE_DSEG, %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS
movw %ax, %ss # -> SS: Stack Segment
movl start-8, %eax
movl start-4, %esp
jmp *%eax
.p2align 2 # force 4 byte alignment
gdt:
SEG_NULLASM # null seg
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg
SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg
gdtdesc:
.word 0x17 # sizeof(gdt) - 1
.long gdt # address gdt