Keras implementation of WassersteinGAN.
Sources:
- keras, theano or tensorflow backend
- h5py
- matplotlib
- opencv 3
- numpy
- tqdm
- parmap
Follow these instructions.
Follow these instructions
CelebA example results
For each image:
- The first 2 rows are generated images
- The last 2 rows are real images
MoG
Results on the unrolled GAN paper to dataset: