Skip to content

Latest commit

 

History

History
 
 

WassersteinGAN

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Generative Adversarial Networks

Keras implementation of WassersteinGAN.

Sources:

Requirements

python modules

  • keras, theano or tensorflow backend
  • h5py
  • matplotlib
  • opencv 3
  • numpy
  • tqdm
  • parmap

Part 1. Processing the data

Follow these instructions.

Part 2. Running the code

Follow these instructions

Part 3. Example results

CelebA example results

figure figure

For each image:

  • The first 2 rows are generated images
  • The last 2 rows are real images

MoG

Results on the unrolled GAN paper to dataset:

figure