-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdet2.tex
1164 lines (1121 loc) · 41.8 KB
/
det2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Chapter 4, Section 2 _Linear Algebra_ Jim Hefferon
% http://joshua.smcvt.edu/linearalgebra
% 2001-Jun-12
\section{Geometry of Determinants}
The prior section develops the determinant algebraically, by
considering formulas satisfying certain conditions.
This section complements that with a geometric approach.
Beyond its intuitive appeal, an advantage of this approach is that while
we have so far only considered whether or not a determinant is zero,
here we shall give a meaning to the value of the determinant.
(The prior section treats the determinant as a function of the
rows but this section focuses on columns.)
\subsection{Determinants as Size Functions}
This parallelogram picture
is familiar from the construction of the sum of the two vectors.
\begin{center}
\includegraphics{ch4.30}
\end{center}
\begin{definition} \label{df:Box}
%<*df:Box>
In $\Re^n$
the \definend{box}\index{box}
(or \definend{parallelepiped}\index{parallelepiped})
formed by
\( \sequence{\vec{v}_1,\dots,\vec{v}_n} \)
is the set
\( \set{t_1\vec{v}_1+\dots+t_n\vec{v}_n
\suchthat t_1,\ldots,t_n\in \closedinterval{0}{1}} \).
%</df:Box>
\end{definition}
\noindent Thus the parallelogram above is the box formed by
$\sequence{\binom{x_1}{y_1},\binom{x_2}{y_2}}$.
A three-space box is shown in \nearbyexample{ex:VolParPiped}.
We can find the area of the above box by drawing an enclosing rectangle
and subtracting away areas not in the box.
\begin{center}
\parbox{1.5in}{\hbox{}\hfil\includegraphics{ch4.31}\hfil\hbox{}}
\quad
\parbox{3.0in}{
\hbox{}\hfil
$\begin{array}{l}
\text{area of parallelogram} \\
\hbox{}\quad \hbox{}
=\text{area of rectangle}
-\text{area of $A$}-\text{area of $B$} \\
\hbox{}\qquad \hbox{}
-\cdots-\text{area of $F$} \\
\hbox{}\quad \hbox{}
=(x_1+x_2)(y_1+y_2)-x_2y_1-x_1y_1/2 \\
\hbox{}\qquad \hbox{}
-x_2y_2/2-x_2y_2/2-x_1y_1/2-x_2y_1 \\
\hbox{}\quad \hbox{}
=x_1y_2-x_2y_1
\end{array}$
\hfil\hbox{}}
\end{center}
That the area equals the value of the determinant
\begin{equation*}
\begin{vmat}
x_1 &x_2 \\
y_1 &y_2
\end{vmat}
=x_1y_2-x_2y_1
\end{equation*}
is no coincidence.
The definition of determinants contains four properties that we know
lead to a unique function for each dimension~$n$.
We shall argue that these properties
make good postulates for a function
that measure the size of boxes in $n$-space.\index{size}
For instance, a function that measures the size of the box
should have the property that multiplying one of the box-defining vectors by
a scalar
will multiply the size by that scalar.
\begin{center}
\includegraphics{ch4.32}
\qquad
\includegraphics{ch4.33}
\end{center}
Shown here is $k=1.4$.
On the right the rescaled region is in solid lines with the
original region shaded for comparison.
% The region formed by $k\vec{v}$ and~$\vec{w}$
% is bigger by a factor of \( k \)
% than the shaded region enclosed by $\vec{v}$ and~$\vec{w}$.
% That is,
% \( \size (k\vec{v},\vec{w})=k\cdot\size (\vec{v},\vec{w}) \) and
That is, we can reasonably expect that
$\size (\dots,k\vec{v},\dots)=k\cdot\size (\dots,\vec{v},\dots)$.
Of course, this condition is one of those in
the definition of determinants.
Another property of determinants that should apply to any
function measuring the size of a box is that
it is unaffected by row combinations.
Here are before-combining and
after-combining boxes (the scalar shown is $k=-0.35$).
\begin{center}
\includegraphics{ch4.34}
\qquad
\includegraphics{ch4.35}
\end{center}
The box formed by $v$ and
$k\vec{v}+\vec{w}$ slants differently
than the original one but the two have the
same base and the same height, and hence the same area.
% (As before, the figure on the right has the
% original region in shade for comparison.)
So we expect that size is not affected by a shear operation
$\size (\dots,\vec{v},\dots,\vec{w},\dots)
=\size (\dots,\vec{v},\dots,k\vec{v}+\vec{w},\dots)$.
Again, this is a determinant condition.
We expect that the box formed by unit vectors has unit size
\begin{center}
\includegraphics{ch4.36}
\end{center}
and we naturally extend that to any $n$-space
$\size(\vec{e}_1,\dots,\vec{e}_n)=1$.
% Again, that is a determinant property.
Condition~(2) of the definition of determinant is
redundant, as remarked following the definition.
We know from the prior section that
for each~$n$ the determinant exists and is unique so we know
that these postulates for size functions are consistent and
that we do not need any more postulates.
Therefore, we are justified in
interpreting \( \det(\vec{v}_1,\dots,\vec{v}_n) \) as giving the
size of the box formed by the vectors.
% (\textit{Comment.}
% An even more basic approach, which also leads to the definition
% below, is in \cite{Weston59}.)
\begin{remark} \label{re:PropertyTwoGivesSign}
Although condition~(2) is redundant it raises an important point.
Consider these two.
\begin{center} \small
\begin{tabular}{c@{\hspace*{8em}}c}
\includegraphics{ch4.37}
&\includegraphics{ch4.38} \\[.25ex]
\ $\begin{vmat}[r]
4 &1 \\
2 &3
\end{vmat}=10$
&\ $\begin{vmat}[r]
1 &4 \\
3 &2
\end{vmat}=-10$
\end{tabular}
\end{center}
Swapping the columns changes the sign.
On the left, starting with $\vec{u}$ and following the
arc inside the angle to $\vec{v}$ (that is, going counterclockwise),
we get a positive size.
On the right, starting at $\vec{v}$ and going to~$\vec{u}$,
and so following the clockwise arc, gives a negative size.
The sign returned by the size function reflects the
\definend{orientation}\index{box!orientation}\index{orientation}
or \definend{sense}\index{box!sense}\index{sense} of the box.
(We see the same thing if we picture the effect of scalar multiplication
by a negative scalar.)
% Although it is both interesting and important, we don't need the idea of
% orientation for the development below and so we will pass it by.
% (See \nearbyexercise{exer:BasisOrient}.)
\end{remark}
\begin{definition} \label{df:Volume}
%<*df:Volume>
The \definend{volume}\index{volume}\index{box!volume}
of a box is the absolute value of the determinant of
a matrix with those vectors as columns.
%</df:Volume>
\end{definition}
\begin{example} \label{ex:VolParPiped}
By the formula that takes the area of the
base times the height, the volume of this
parallelepiped is $12$.
That agrees with the determinant.
\begin{center}
\parbox{2in}{\hbox{}\hfil\includegraphics{asy/ppiped.pdf}\hfil\hbox{}}
% \parbox{2in}{\hbox{}\hfil\includegraphics{ch4.39}\hfil\hbox{}}
\quad
$\begin{vmat}[r]
2 &0 &-1\\
0 &3 &0 \\
2 &1 &1
\end{vmat}=12$
\end{center}
We can also compute the volume
as the absolute value of this determinant.
\begin{equation*}
\begin{vmat}[r]
0 &2 &0 \\
3 &0 &3 \\
1 &2 &1
\end{vmat}=-12
\end{equation*}
\end{example}
% The next result describes some of the geometry of the linear
% functions that act on
% \( \Re^n \).
\begin{theorem}\label{th:MatChVolByDetMat}
\index{size}\index{transformation!size change}
%<*th:MatChVolByDetMat>
A transformation \( \map{t}{\Re^n}{\Re^n} \) changes the size of all boxes
by the same factor, namely, the size of the image of a box
$\deter{t(S)}$ is $\deter{T}$ times the size of the box $\deter{S}$,
where $T$ is the matrix
representing $t$ with respect to the standard basis.
That is, the determinant of a product is the
product of the determinants $\deter{TS}=\deter{T}\cdot\deter{S}$.
%</th:MatChVolByDetMat>
\end{theorem}
The two sentences say the same thing, first in map terms and then
in matrix terms.
This is because
$\deter{t(S)}=\deter{TS}$, as both give the size of the box that is the
image of the unit box $\stdbasis_n$ under the composition $\composed{t}{s}$,
where the maps are represented with respect to the standard basis.
We will prove the second sentence.
\begin{proof}
%<*pf:MatChVolByDetMat0>
First consider the case that $T$ is singular and thus
does not have an inverse.
Observe that if \( TS \) is invertible then there
is an $M$ such that \( (TS)M=I \), so
\( T(SM)=I \), and so \( T \) is invertible.
The contrapositive of that observation is that
if \( T \) is not invertible then neither is \( TS \) \Dash
if $\deter{T}=0$ then $\deter{TS}=0$.
%</pf:MatChVolByDetMat0>
%<*pf:MatChVolByDetMat1>
Now consider the case that $T$ is nonsingular.
Any nonsingular matrix factors into a product
of elementary matrices $T=E_1E_2\cdots E_r$.
To finish this argument
we will verify that
\( \deter{ES}=\deter{E}\cdot\deter{S} \)
for all matrices~$S$ and elementary matrices~$E$.
The result will then follow because
$\deter{TS}=\deter{E_1\cdots E_rS}=\deter{E_1}\cdots\deter{E_r}\cdot\deter{S}
=\deter{E_1\cdots E_r}\cdot\deter{S}=\deter{T}\cdot\deter{S}$.
%</pf:MatChVolByDetMat1>
%<*pf:MatChVolByDetMat2>
There are three types of elementary matrix.
We will cover the $M_i(k)$ case;
the $P_{i,j}$ and $C_{i,j}(k)$ checks are similar.
The matrix $M_i(k)S$ equals $S$ except that row~$i$ is multiplied by $k$.
The third condition of determinant functions
then gives that $\deter{M_i(k)S}=k\cdot\deter{S}$.
But $\deter{M_i(k)}=k$, again by the third condition because
$M_i(k)$ is derived from the identity by multiplication of row~$i$ by
$k$.
Thus \( \deter{ES}=\deter{E}\cdot\deter{S} \) holds for
$E=M_i(k)$.
%</pf:MatChVolByDetMat2>
\end{proof}
\begin{example}
Application of the map $t$ represented with respect to the standard
bases by
\begin{equation*}
\begin{mat}[r]
1 &1 \\
-2 &0
\end{mat}
\end{equation*}
will double sizes of boxes, e.g., from this
\begin{center}
\parbox{1.5in}{\hbox{}\hfil\includegraphics{ch4.40}\hfil\hbox{}}
\quad
$\begin{vmat}[r]
2 &1 \\
1 &2
\end{vmat}=3$
\end{center}
to this
\begin{center}
\parbox{1.5in}{\hbox{}\hfil\includegraphics{ch4.41}\hfil\hbox{}}
\quad
$\begin{vmat}[r]
3 &3 \\
-4 &-2
\end{vmat}=6$
\end{center}
\end{example}
% Recall that determinants are not additive homomorphisms, that
% $\det(A+B)$ need not equal $\det(A)+\det(B)$.
% In contrast, the above theorem says that determinants are
% multiplicative homomorphisms:
% $\det(AB)$ equals $\det(A)\cdot \det(B)$.
\begin{corollary} \label{co:DeterminantOfInverseIsInverseOfDeterminant}
%<*co:DeterminantOfInverseIsInverseOfDeterminant>
If a matrix is invertible then the determinant of its inverse is the
inverse of its determinant $\deter{T^{-1}}=1/\deter{T}$.
%</co:DeterminantOfInverseIsInverseOfDeterminant>
\end{corollary}
\begin{proof}
%<*pf:DeterminantOfInverseIsInverseOfDeterminant>
$1=\deter{I}=\deter{TT^{-1}}=\deter{T}\cdot\deter{T^{-1}}$
%</pf:DeterminantOfInverseIsInverseOfDeterminant>
\end{proof}
\begin{exercises}
\item
Find the volume of the region defined by the vectors.
\begin{exparts}
\partsitem $\sequence{\colvec[r]{1 \\ 3},\colvec[r]{-1 \\ 4}}$
\partsitem $\sequence{\colvec[r]{2 \\ 1 \\ 0},\colvec[r]{3 \\ -2 \\ 4},
\colvec[r]{8 \\ -3 \\ 8}}$
\partsitem $\sequence{\colvec[r]{1 \\ 2 \\ 0 \\ 1},
\colvec[r]{2 \\ 2 \\ 2 \\ 2},
\colvec[r]{-1 \\ 3 \\ 0 \\ 5},
\colvec[r]{0 \\ 1 \\ 0 \\ 7}}$
\end{exparts}
\begin{answer}
For each, find the determinant and take the absolute value.
\begin{exparts*}
\partsitem $7$
\partsitem $0$
\partsitem $58$
\end{exparts*}
\end{answer}
\recommended \item
Is
\begin{equation*}
\colvec[r]{4 \\ 1 \\ 2}
\end{equation*}
inside of the box formed by these three?
\begin{equation*}
\colvec[r]{3 \\ 3 \\ 1}
\quad
\colvec[r]{2 \\ 6 \\ 1}
\quad
\colvec[r]{1 \\ 0 \\ 5}
\end{equation*}
\begin{answer}
Solving
\begin{equation*}
c_1\colvec[r]{3 \\ 3 \\ 1}
+c_2\colvec[r]{2 \\ 6 \\ 1}
+c_3\colvec[r]{1 \\ 0 \\ 5}
=\colvec[r]{4 \\ 1 \\ 2}
\end{equation*}
gives the unique solution
\( c_3=11/57 \), \( c_2=-40/57 \) and \( c_1=99/57 \).
Because \( c_1>1 \), the vector is not in the box.
\end{answer}
\recommended \item
Find the volume of this region.
\begin{center}
\includegraphics{ch4.42}
\end{center}
\begin{answer}
Move the parallelepiped to start at the origin,
so that it becomes the box formed by
\begin{equation*}
\sequence{
\colvec[r]{3 \\ 0},
\colvec[r]{2 \\ 1}
}
\end{equation*}
and now the absolute value of this determinant is
easily computed as $3$.
\begin{equation*}
\begin{vmat}[r]
3 &2 \\
0 &1
\end{vmat}=3
\end{equation*}
\end{answer}
\recommended \item
Suppose that \( \deter{A}=3 \).
By what factor do these change volumes?
\begin{exparts*}
\partsitem \( A \)
\partsitem \( A^2 \)
\partsitem \( A^{-2} \)
\end{exparts*}
\begin{answer}
\begin{exparts*}
\partsitem \( 3 \)
\partsitem \( 9 \)
\partsitem $1/9$
\end{exparts*}
\end{answer}
\recommended \item
Consider the linear transformation of~$\Re^3$
represented with respect to the
standard bases by this matrix.
\begin{equation*}
\begin{mat}
1 &0 &-1 \\
3 &1 &1 \\
-1 &0 &3
\end{mat}
\end{equation*}
\begin{exparts}
\partsitem Compute the determinant of the matrix.
Does the transformation preserve orientation or reverse it?
\partsitem Find the size of the box defined by these vectors.
What is its orientation?
\begin{equation*}
\colvec{1 \\ -1 \\ 2}
\quad
\colvec{2 \\ 0 \\ -1}
\quad
\colvec{1 \\ 1 \\ 0}
\end{equation*}
\partsitem Find the images under $t$ of the vectors in the prior item and
find the size of the box that they define.
What is the orientation?
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem
Gauss's Method
\begin{equation*}
\grstep[\rho_1+\rho_3]{-3\rho_1+\rho_2}
\begin{mat}
1 &0 &-1 \\
0 &1 &4 \\
0 &0 &2
\end{mat}
\end{equation*}
gives the determinant as~$+2$.
The sign is positive so the transformation preserves orientation.
\partsitem
The size of the box is the value of this determinant.
\begin{equation*}
\begin{vmat}
1 &2 &1 \\
-1 &0 &1 \\
2 &-1 &0
\end{vmat}
=+6
\end{equation*}
The orientation is positive.
\partsitem
Since this transformation is represented by the given matrix with
respect
to the standard bases, and with respect to
the standard basis the vectors represent themselves,
to find the image of the vectors under the transformation just
multiply
them, from the left, by the matrix.
\begin{equation*}
\colvec{1 \\ -1 \\ 2}\mapsto\colvec{-1 \\ 4 \\ 5}
\qquad
\colvec{2 \\ 0 \\ -1}\mapsto\colvec{3 \\ 5 \\ -5}
\qquad
\colvec{1 \\ 1 \\ 0}\mapsto\colvec{1 \\ 4 \\ -1}
\end{equation*}
Then compute the size of the resulting box.
\begin{equation*}
\begin{vmat}
-1 &3 &1 \\
4 &5 &4 \\
5 &-5 &-1
\end{vmat}
=+12
\end{equation*}
The starting box is positively oriented, the transformation
preserves orientations (since the determinant of the matrix is
positive), and the ending box is also positively oriented.
\end{exparts}
\end{answer}
\item
By what factor does each transformation change the size of
boxes?
\begin{exparts*}
\partsitem $\colvec{x \\ y}\mapsto\colvec{2x \\ 3y}$
\partsitem $\colvec{x \\ y}\mapsto\colvec{3x-y \\ -2x+y}$
\partsitem $\colvec{x \\ y \\ z}\mapsto\colvec{x-y \\ x+y+z \\ y-2z}$
\end{exparts*}
\begin{answer}
Express each transformation with respect to the standard bases
and find the determinant.
\begin{exparts*}
\partsitem $6$
\partsitem $-1$
\partsitem $-5$
\end{exparts*}
\end{answer}
\item
What is the area of the image of the rectangle
\( [2..4]\times [2..5] \) under the action of
this matrix?
\begin{equation*}
\begin{mat}[r]
2 &3 \\
4 &-1
\end{mat}
\end{equation*}
\begin{answer}
The starting area is \( 6 \) and the matrix changes sizes by
\( -14 \).
Thus the area of the image is \( 84 \).
\end{answer}
\item
If \( \map{t}{\Re^3}{\Re^3} \) changes volumes by a factor of \( 7 \)
and \( \map{s}{\Re^3}{\Re^3} \) changes volumes by a factor of \( 3/2 \)
then by what factor will their composition changes volumes?
\begin{answer}
By a factor of \( 21/2 \).
\end{answer}
\item
In what way does the definition of a box differ from the
definition of a span?
\begin{answer}
For a box we take a sequence of vectors (as described
in the remark, the order of the vectors matters),
while for a span we take a set of vectors.
Also, for a box subset of $\Re^n$ there must be $n$ vectors;
of course for a span there can be any number of vectors.
Finally, for a box the coefficients $t_1$,~\ldots, $t_n$
are in the interval $[0..1]$, while for a
span the coefficients are free to range over all of $\Re$.
\end{answer}
\recommended \item
Why doesn't this picture contradict
\nearbytheorem{th:MatChVolByDetMat}?
\begin{center}
\begin{tabular}{ccc}
\includegraphics{ch4.43}
&\raisebox{12pt}{\( \grstep{\bigl(\begin{smallmatrix}
2 &1 \\
0 &1
\end{smallmatrix}\bigr)} \)}
&\includegraphics{ch4.44} \\
area is $2$
&determinant is $2$
&area is $5$
\end{tabular}
\end{center}
\begin{answer}
We have drawn that picture to mislead.
The picture on the left is not the box formed by two vectors.
If we slide it to the origin then it becomes the box formed by
this sequence.
\begin{equation*}
\sequence{
\colvec[r]{0 \\ 1},
\colvec[r]{2 \\ 0}
}
\end{equation*}
Then the image under the action of the matrix is the box formed
by this sequence.
\begin{equation*}
\sequence{
\colvec[r]{1 \\ 1},
\colvec[r]{4 \\ 0}
}
\end{equation*}
which has an area of $4$.
\end{answer}
\recommended \item
Does \( \deter{TS}=\deter{ST} \)?
\( \deter{T(SP)}=\deter{(TS)P} \)?
\begin{answer}
Yes to both.
For instance, the first is \( \deter{TS}=\deter{T}\cdot\deter{S}=
\deter{S}\cdot\deter{T}=\deter{ST} \).
\end{answer}
\item Show that there are no $\nbyn{2}$ matrices $A$ and~$B$
satisfying these. % http://math.stackexchange.com/questions/827262/need-help-with-a-linear-algebra-proof
\begin{equation*}
AB=\begin{mat}[r]
1 &-1 \\
2 &0
\end{mat}
\quad
BA=\begin{mat}[r]
2 &1 \\
1 &1
\end{mat}
\end{equation*}
\begin{answer} % due to math.stackexchange.com user dgrasines517
Because $\deter{AB}=\deter{A}\cdot\deter{B}=\deter{BA}$ and these
two matrices have different determinants.
\end{answer}
\item
\begin{exparts}
\partsitem Suppose that \( \deter{A}=3 \) and that \( \deter{B}=2 \).
Find \( \deter{A^2\cdot \trans{B}\cdot B^{-2}\cdot \trans{A} } \).
\partsitem Assume that \( \deter{A}=0 \).
Prove that \( \deter{6A^3+5A^2+2A}=0 \).
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem If it is defined then it is
\( (3^2)\cdot (2)\cdot (2^{-2})\cdot (3) \).
\partsitem \( \deter{6A^3+5A^2+2A}=\deter{A}\cdot\deter{6A^2+5A+2I} \).
\end{exparts}
\end{answer}
\recommended \item
Let \( T \) be the matrix representing (with respect to the standard
bases) the map that rotates plane vectors counterclockwise thru
\( \theta \) radians.
By what factor does \( T \) change sizes?
\begin{answer}
\(\begin{vmat}
\cos\theta &-\sin\theta \\
\sin\theta &\cos\theta
\end{vmat}=1 \)
\end{answer}
\recommended \item
Must a transformation \( \map{t}{\Re^2}{\Re^2} \) that preserves areas
also preserve lengths?
\begin{answer}
No, for instance the determinant of
\begin{equation*}
T=\begin{mat}[r]
2 &0 \\
0 &1/2
\end{mat}
\end{equation*}
is \( 1 \) so it preserves areas, but the vector \( T\vec{e}_1 \)
has length \( 2 \).
\end{answer}
\recommended \item
What is the volume of a parallelepiped in \( \Re^3 \) bounded by a
linearly dependent set?
\begin{answer}
It is zero.
\end{answer}
\recommended \item
Find the area of the triangle in \( \Re^3 \) with endpoints
\( (1,2,1) \), \( (3,-1,4) \), and \( (2,2,2) \).
(Area, not volume.
The triangle defines a plane\Dash what is the area of the triangle in that
plane?)
\begin{answer}
Two of the three sides of the triangle are formed by these vectors.
\begin{equation*}
\colvec[r]{2 \\ 2 \\ 2}-\colvec[r]{1 \\ 2 \\ 1}=\colvec[r]{1 \\ 0 \\ 1}
\qquad
\colvec[r]{3 \\ -1 \\ 4}-\colvec[r]{1 \\ 2 \\ 1}=\colvec[r]{2 \\ -3 \\ 3}
\end{equation*}
One way to find the area of this triangle is to produce a length-one
vector orthogonal to these two.
From these two relations
\begin{equation*}
\colvec[r]{1 \\ 0 \\ 1}
\cdot\colvec{x \\ y \\ z}
=\colvec[r]{0 \\ 0 \\ 0}
\qquad
\colvec[r]{2 \\ -3 \\ 3}
\cdot\colvec{x \\ y \\ z}
=\colvec[r]{0 \\ 0 \\ 0}
\end{equation*}
we get a system
\begin{equation*}
\begin{linsys}{3}
x & & &+ &z &= &0 \\
2x &- &3y &+ &3z &= &0
\end{linsys}
\grstep{-2\rho_1+\rho_2}
\begin{linsys}{3}
x & & &+ &z &= &0 \\
& &-3y&+ &z &= &0
\end{linsys}
\end{equation*}
with this solution set.
\begin{equation*}
\set{\colvec[r]{-1 \\ 1/3 \\ 1}z\suchthat z\in\Re},
\end{equation*}
A solution of length one is this.
\begin{equation*}
\frac{1}{\sqrt{19/9}}\colvec[r]{-1 \\ 1/3 \\ 1}
\end{equation*}
Thus the area of the triangle is the absolute value of
this determinant.
\begin{equation*}
\begin{vmat}[r]
1 &2 &-3/\sqrt{19} \\
0 &-3 &1/\sqrt{19} \\
1 &3 &3/\sqrt{19}
\end{vmat}
=-12/\sqrt{19}
\end{equation*}
\end{answer}
\recommended \item \label{exer:DetProdEqProdDetsFcn}
An alternate proof of \nearbytheorem{th:MatChVolByDetMat} uses
the definition of determinant functions.
\begin{exparts}
\partsitem Note that the vectors forming
$S$ make a linearly dependent set if and only if
$\deter{S}=0$, and check that the result holds in this case.
\partsitem For the $\deter{S}\neq 0$ case, to show that
$\deter{TS}/\deter{S}=\deter{T}$ for all transformations, consider
the function
\( \map{d}{\matspace_{\nbyn{n}}}{\Re} \) given by
\( T\mapsto \deter{TS}/\deter{S} \).
Show that $d$ has the first property of a determinant.
\partsitem Show that $d$ has the remaining three properties of
a determinant function.
\partsitem Conclude that $\deter{TS}=\deter{T}\cdot\deter{S}$.
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem Because the image of a linearly dependent set is
linearly dependent,
if the vectors forming $S$ make a linearly dependent set,
so that $\deter{S}=0$,
then the vectors forming $t(S)$ make a linearly dependent set,
so that $\deter{TS}=0$, and in this case the equation holds.
\partsitem We must check that if
$T\smash[b]{\grstep{k\rho_i+\rho_j}}\hat{T}$ then
$d(T)=\deter{TS}/\deter{S}=\deter{\hat{T}S}/\deter{S}=d(\hat{T})$.
We can do this by checking that combining rows first and
then multiplying to get \( \hat{T}S \) gives the same result as
multiplying first to get \( TS \) and then combining
(because the determinant \( \deter{TS} \) is unaffected by the
combining rows
so we'll then have that \( \deter{\hat{T}S}=\deter{TS} \) and
hence that \( d(\hat{T})=d(T) \)).
This check runs:~after adding
\( k \) times row~\( i \) of \( TS \) to
row~$j$ of \( TS \), the \( j,p \) entry is
\( (kt_{i,1}+t_{j,1})s_{1,p}+\dots+(kt_{i,r}+t_{j,r})s_{r,p} \),
which is the \( j,p \) entry of \( \hat{T}S \).
\partsitem For the second property, we need only check that swapping
$T\smash[b]{\grstep{\rho_i\swap\rho_j}}\hat{T}$
and then multiplying to get \( \hat{T}S \) gives the same result as
multiplying \( T \) by \( S \) first and then swapping
(because,
as the determinant \( \deter{TS} \) changes sign on
the row swap, we'll then have \( \deter{\hat{T}S}=-\deter{TS} \),
and so \( d(\hat{T})=-d(T) \)).
This check runs just like the one for the first property.
For the third property, we need only show that performing
$T\smash[b]{\grstep{k\rho_i}}\hat{T}$
and then computing \( \hat{T}S \) gives the same result as
first computing \( TS \) and then performing the scalar
multiplication
(as the determinant \( \deter{TS} \) is rescaled by \( k \),
we'll have \( \deter{\hat{T}S}=k\deter{TS} \) and
so \( d(\hat{T})=k\,d(T) \)).
Here too, the argument runs just as above.
The fourth property, that if $T$ is $I$ then the result is $1$,
is obvious.
\partsitem Determinant functions are unique, so
\( \deter{TS}/\deter{S}=d(T)=\deter{T} \),
and so $\deter{TS}=\deter{T}\deter{S}$.
\end{exparts}
\end{answer}
% \item
% Use the fact that
% \( \deter{TS}=\deter{T}\,\deter{S} \)
% to prove that if \( \phi \) and \( \sigma \) are \( n \)-permutations
% then \( \sgn(\phi\sigma)=\sgn(\phi)\sgn(\sigma) \).
% \cite{HoffmanKunze}
% \begin{answer}
% Take \( T=P_\phi \) and \( S=P_\sigma \).
% Note that \( TS=P_{\phi\sigma} \) and so
% \( \deter{P_{\phi\sigma}}=\deter{P_\phi}\cdot\deter{P_\sigma} \).
% \end{answer}
\item
Give a non-identity matrix with the property that
\( \trans{A}=A^{-1} \).
Show that if \( \trans{A}=A^{-1} \) then \( \deter{A}=\pm 1 \).
Does the converse hold?
\begin{answer}
Any permutation matrix has the property that the transpose of the
matrix is its inverse.
For the implication, we know that \( \deter{\trans{A}}=\deter{A} \).
Then \( 1=\deter{A\cdot A^{-1}}=\deter{A\cdot\trans{A}}
=\deter{A}\cdot\deter{\trans{A}}=\deter{A}^2 \).
The converse does not hold; here is an example.
\begin{equation*}
\begin{mat}[r]
3 &1 \\
2 &1
\end{mat}
\end{equation*}
\end{answer}
\item
The algebraic
property of determinants that factoring a scalar out of a single
row will multiply the determinant by that scalar shows that
where \( H \) is
\( \nbyn{3} \), the determinant of \( cH \) is \( c^3 \) times the
determinant of \( H \).
Explain this geometrically, that is,
using \nearbytheorem{th:MatChVolByDetMat}.
(The observation that increasing the linear size of a three-dimensional
object by a factor of $c$ will increase its volume by a factor of
$c^3$ while only increasing its surface area by an amount proportional
to a factor of
$c^2$ is the \definend{Square-cube law}~\cite{Wikipedia}.)
\begin{answer}
Where the sides of the box are \( c \) times longer, the box
has \( c^3 \) times as many cubic units of volume.
\end{answer}
\recommended \item
We say that matrices $H$ and $G$ are
\definend{similar}\index{similar}\index{matrix!similar}
if there is a nonsingular matrix $P$ such that $H=P^{-1}GP$
(we will study this relation in Chapter Five).
Show that similar matrices have the same determinant.
\begin{answer}
If \( H=P^{-1}GP \)
then \( \deter{H}=\deter{P^{-1}}\deter{G}\deter{P}
=\deter{P^{-1}}\deter{P}\deter{G}=\deter{P^{-1}P}\deter{G}
=\deter{G} \).
\end{answer}
\item \label{exer:BasisOrient}
We usually represent vectors in \( \Re^2 \) with respect to the
standard basis so vectors in the first quadrant have both coordinates
positive.
\begin{center}
\parbox{.75in}{\hbox{}\hfil\includegraphics{ch4.45}\hfil\hbox{}}
\qquad
\( \rep{\vec{v}}{\stdbasis_2}=\colvec[r]{+3 \\ +2} \)
\end{center}
Moving counterclockwise around the origin, we cycle thru four regions:
{\scriptsize
\begin{equation*}
\cdots
\;\longrightarrow\colvec{+ \\ +}
\;\longrightarrow\colvec{- \\ +}
\;\longrightarrow\colvec{- \\ -}
\;\longrightarrow\colvec{+ \\ -}
\;\longrightarrow\cdots\,.
\end{equation*} }
Using this basis
\begin{center}
\( B=\sequence{\colvec[r]{0 \\ 1},\colvec[r]{-1 \\ 0}} \)
\qquad
\parbox{.75in}{\hbox{}\hfil\includegraphics{ch4.46}\hfil\hbox{}}
\end{center}
gives the same counterclockwise cycle.
We say these two bases have the same \emph{orientation}.\index{orientation}
\begin{exparts}
\partsitem Why do they give the same cycle?
\partsitem What other configurations of unit vectors on the axes give the
same cycle?
\partsitem Find the determinants of the matrices formed from
those (ordered) bases.
\partsitem What other counterclockwise cycles are possible,
and what are the
associated determinants?
\partsitem What happens in \( \Re^1 \)?
\partsitem What happens in \( \Re^3 \)?
\end{exparts}
A fascinating general-audience
discussion of orientations is in \cite{Gardner}.
\begin{answer}
\begin{exparts}
\partsitem The new basis is the old basis rotated by \( \pi/4 \).
\partsitem
$
\sequence{\colvec[r]{-1 \\ 0},
\colvec[r]{0 \\ -1}}
$, $
\sequence{\colvec[r]{0 \\ -1},
\colvec[r]{1 \\ 0}}
$
\partsitem In each case the determinant is \( +1 \)
(we say that these bases
have \definend{positive orientation}).
\partsitem Because only one sign can change at a time, the only other
cycle possible is
\begin{equation*}
\cdots
\;\longrightarrow\colvec{+ \\ +}
\;\longrightarrow\colvec{+ \\ -}
\;\longrightarrow\colvec{- \\ -}
\;\longrightarrow\colvec{- \\ +}
\;\longrightarrow\cdots\,.
\end{equation*}
Here each associated determinant is \( -1 \)
(we say that such bases have a \definend{negative orientation}).
\partsitem There is one positively oriented basis \( \sequence{(1)} \)
and one negatively oriented basis \( \sequence{(-1)} \).
\partsitem There are \( 48 \) bases (\( 6 \) half-axis choices are
possible for the first unit vector, \( 4 \) for the second, and
\( 2 \) for the last).
Half are positively oriented like the standard basis on the left
below,
and half are negatively oriented like the one on the right
\begin{center}
\includegraphics{ch4.47}
\hspace*{4em}
\includegraphics{ch4.48}
\end{center}
In \( \Re^3 \) positive orientation is sometimes called
`right hand orientation' because if a person places their
right hand
with their fingers curling
from \( \vec{e}_1 \) to \( \vec{e}_2 \) then the
thumb will point with \( \vec{e}_3 \).
\end{exparts}
\end{answer}
% \item
% A region of \( \Re^n \) is \definend{convex}\index{convex region}
% if for any two points
% connecting that region, the line segment joining them lies entirely
% inside the region (the inside of a sphere is convex, while the skin of a
% sphere or a horseshoe is not).
% Prove that boxes are convex.
% \begin{answer}
% Let \( \vec{p}=p_1\vec{v}_1+\dots +p_n\vec{v}_n \) and
% \( \vec{q}=q_1\vec{v}_1+\dots +q_n\vec{v}_n \) be two vectors from a box
% so that \( p_1,\dots,\,p_n,q_1,\dots,\,q_n\in [0..1] \).
% The line segment between them is this.
% \begin{equation*}
% \set{t\cdot\vec{p}+(1-t)\cdot\vec{q}
% \suchthat t\in [0..1]}
% =\set{(tp_1+(1-t)q_1)\cdot\vec{v}_1+\dots+(tp_n+(1-t)q_n)\cdot\vec{v}_n
% \suchthat t\in [0..1] }
% \end{equation*}
% Showing that each member of that set is in the box is routine.
% \end{answer}
\item \label{exer:DetProdEqProdDetsPerms}
\textit{This question uses material from
the optional Determinant Functions Exist subsection.}
Prove \nearbytheorem{th:MatChVolByDetMat} by using the
permutation expansion formula for the determinant.
\begin{answer}
We will compare \( \det(\vec{s}_1,\dots,\vec{s}_n) \) with
\( \det(t(\vec{s}_1),\dots,t(\vec{s}_n)) \) to show that the second
differs from the first by a factor of $\deter{T}$.
We represent the \( \vec{s}\, \)'s with respect to the standard bases
\begin{equation*}
\rep{\vec{s}_i}{\stdbasis_n}=
\colvec{s_{1,i} \\ s_{2,i} \\ \vdots \\ s_{n,i}}
\end{equation*}
and then we represent the map application with
matrix-vector multiplication
\begin{align*}
\rep{\,t(\vec{s}_i)\,}{\stdbasis_n}
&=\generalmatrix{t}{n}{n}
\colvec{s_{1,j} \\ s_{2,j} \\ \vdots \\ s_{n,j}} \\
&=s_{1,j}\colvec{t_{1,1} \\ t_{2,1} \\ \vdots \\ t_{n,1}}
+s_{2,j}\colvec{t_{1,2} \\ t_{2,2} \\ \vdots \\ t_{n,2}}
+\dots
+s_{n,j}\colvec{t_{1,n} \\ t_{2,n} \\ \vdots \\ t_{n,n}} \\
&=s_{1,j}\vec{t}_1+s_{2,j}\vec{t}_2+\dots+s_{n,j}\vec{t}_n
\end{align*}
where \( \vec{t}_i \) is column~$i$ of \( T \).
Then $\det(t(\vec{s}_1),\,\dots,\,t(\vec{s}_n))$ equals
$
\det(s_{1,1}\vec{t}_1\!+\!s_{2,1}\vec{t}_2\!
+\!\dots\!+\!s_{n,1}\vec{t}_n,\,
\dots,\,
s_{1,n}\vec{t}_1\!+\!s_{2,n}\vec{t}_2
\!+\!\dots\!+\!s_{n,n}\vec{t}_n)
$.
As in the derivation of the permutation expansion formula, we
apply multilinearity,
first splitting along the sum in the first argument
\begin{multline*}
\det(s_{1,1}\vec{t}_1,\,
\dots,\,
s_{1,n}\vec{t}_1+s_{2,n}\vec{t}_2+\dots+s_{n,n}\vec{t}_n) \\
+\cdots{}
+\det(s_{n,1}\vec{t}_n,\,
\ldots,\,
s_{1,n}\vec{t}_1+s_{2,n}\vec{t}_2+\dots+s_{n,n}\vec{t}_n)
\end{multline*}
and then splitting each of those $n$ summands along the sums
in the second arguments, etc.
We end with, as in the derivation of the permutation expansion,