forked from geekcomputers/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsierpinski_triangle.py
68 lines (51 loc) · 2.11 KB
/
sierpinski_triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""Author Anurag Kumar | [email protected] | git/anuragkumarak95
Simple example of Fractal generation using recursive function.
What is Sierpinski Triangle?
>>The Sierpinski triangle (also with the original orthography Sierpinski), also called the Sierpinski gasket or the Sierpinski Sieve,
is a fractal and attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller
equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets, i.e.,
it is a mathematically generated pattern that can be reproducible at any magnification or reduction. It is named after
the Polish mathematician Wacław Sierpinski, but appeared as a decorative pattern many centuries prior to the work of Sierpinski.
Requirements(pip):
- turtle
Python:
- 2.6
Usage:
- $python sierpinski_triangle.py <int:depth_for_fractal>
Credits: This code was written by editing the code from http://www.lpb-riannetrujillo.com/blog/python-fractal/
"""
import sys
import turtle
PROGNAME = "Sierpinski Triangle"
if len(sys.argv) != 2:
raise Exception(
"right format for using this script: $python fractals.py <int:depth_for_fractal>"
)
myPen = turtle.Turtle()
myPen.ht()
myPen.speed(5)
myPen.pencolor("red")
points = [[-175, -125], [0, 175], [175, -125]] # size of triangle
def getMid(p1, p2):
return ((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2) # find midpoint
def triangle(points, depth):
myPen.up()
myPen.goto(points[0][0], points[0][1])
myPen.down()
myPen.goto(points[1][0], points[1][1])
myPen.goto(points[2][0], points[2][1])
myPen.goto(points[0][0], points[0][1])
if depth > 0:
triangle(
[points[0], getMid(points[0], points[1]), getMid(points[0], points[2])],
depth - 1,
)
triangle(
[points[1], getMid(points[0], points[1]), getMid(points[1], points[2])],
depth - 1,
)
triangle(
[points[2], getMid(points[2], points[1]), getMid(points[0], points[2])],
depth - 1,
)
triangle(points, int(sys.argv[1]))