forked from mysql/mysql-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhash_join_iterator.cc
1216 lines (1073 loc) · 46.1 KB
/
hash_join_iterator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (c) 2018, 2024, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/iterators/hash_join_iterator.h"
#include <algorithm>
#include <atomic>
#include <bit>
#include <cassert>
#include <cmath>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
#include "field_types.h"
#include "my_alloc.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "my_xxhash.h"
#include "mysql/components/services/bits/psi_bits.h"
#include "mysqld_error.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/iterators/hash_join_buffer.h"
#include "sql/iterators/row_iterator.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/pfs_batch_mode.h"
#include "sql/sql_class.h"
#include "sql/sql_list.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/system_variables.h"
#include "sql/table.h"
using hash_join_buffer::LoadImmutableStringIntoTableBuffers;
// An arbitrary hash value for the empty string, to avoid the hash function
// from doing arithmetic on nullptr, which is undefined behavior.
static constexpr size_t kZeroKeyLengthHash = 2669509769;
HashJoinIterator::HashJoinIterator(
THD *thd, unique_ptr_destroy_only<RowIterator> build_input,
const Prealloced_array<TABLE *, 4> &build_input_tables,
double estimated_build_rows,
unique_ptr_destroy_only<RowIterator> probe_input,
const Prealloced_array<TABLE *, 4> &probe_input_tables, bool store_rowids,
table_map tables_to_get_rowid_for, size_t max_memory_available,
const std::vector<HashJoinCondition> &join_conditions,
bool allow_spill_to_disk, JoinType join_type,
const Mem_root_array<Item *> &extra_conditions,
std::span<AccessPath *> single_row_index_lookups, HashJoinInput first_input,
bool probe_input_batch_mode, uint64_t *hash_table_generation)
: RowIterator(thd),
m_state(State::READING_ROW_FROM_PROBE_ITERATOR),
m_hash_table_generation(hash_table_generation),
m_build_input(std::move(build_input)),
m_probe_input(std::move(probe_input)),
m_probe_input_tables(probe_input_tables, store_rowids,
tables_to_get_rowid_for),
m_build_input_tables(build_input_tables, store_rowids,
tables_to_get_rowid_for),
m_row_buffer(m_build_input_tables, join_conditions, max_memory_available),
m_join_conditions(PSI_NOT_INSTRUMENTED, join_conditions.data(),
join_conditions.data() + join_conditions.size()),
m_chunk_files_on_disk(thd->mem_root),
m_estimated_build_rows(estimated_build_rows),
// For (LEFT)OUTER and ANTI-join we may have to return rows even if the
// build input is empty. Therefore we check the probe input for emptiness
// first. If 'probe' is empty, there is no need to read from 'build',
// while the converse is not the case.
m_first_input(
(join_type == JoinType::OUTER || join_type == JoinType::ANTI)
? HashJoinInput::kProbe
: first_input),
m_probe_input_batch_mode(probe_input_batch_mode),
m_allow_spill_to_disk(allow_spill_to_disk),
m_join_type(join_type),
m_single_row_index_lookups(single_row_index_lookups) {
assert(m_build_input != nullptr);
assert(m_probe_input != nullptr);
// If there are multiple extra conditions, merge them into a single AND-ed
// condition, so evaluation of the item is a bit easier.
if (extra_conditions.size() == 1) {
m_extra_condition = extra_conditions[0];
} else if (extra_conditions.size() > 1) {
List<Item> items;
for (Item *cond : extra_conditions) {
items.push_back(cond);
}
m_extra_condition = new Item_cond_and(items);
m_extra_condition->quick_fix_field();
m_extra_condition->update_used_tables();
m_extra_condition->apply_is_true();
}
}
bool HashJoinIterator::InitRowBuffer() {
if (m_row_buffer.Init()) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
m_current_row = LinkedImmutableString{nullptr};
return false;
}
// Mark that blobs should be copied for each table that contains at least one
// geometry column.
static void MarkCopyBlobsIfTableContainsGeometry(
const pack_rows::TableCollection &table_collection) {
for (const pack_rows::Table &table : table_collection.tables()) {
for (const pack_rows::Column &col : table.columns) {
if (col.field_type == MYSQL_TYPE_GEOMETRY) {
table.table->copy_blobs = true;
break;
}
}
}
}
bool HashJoinIterator::InitProbeIterator() {
assert(m_state == State::READING_ROW_FROM_PROBE_ITERATOR);
if (m_probe_input->Init()) {
return true;
}
if (m_probe_input_batch_mode) {
m_probe_input->StartPSIBatchMode();
}
return false;
}
bool HashJoinIterator::ReadFirstProbeRow() {
assert(m_first_input == HashJoinInput::kProbe);
m_state = State::READING_ROW_FROM_PROBE_ITERATOR;
if (InitProbeIterator()) {
return true;
}
const int result = m_probe_input->Read();
if (result == 1) {
return true;
} else if (result == -1) {
m_state = State::END_OF_ROWS;
return false;
} else {
assert(result == 0);
m_probe_row_read = true;
// Prepare to read the build input into the hash map.
m_build_input_tables.PrepareForRequestRowId();
return false;
}
}
bool HashJoinIterator::InitHashTable() {
if (BuildHashTable()) {
return true;
}
if (m_hash_table_generation != nullptr) {
m_last_hash_table_generation = *m_hash_table_generation;
}
if (m_state == State::END_OF_ROWS) {
// BuildHashTable() decided that the join is done (the build input is
// empty, and we are in an inner-/semijoin. Anti-/outer join must output
// NULL-complemented rows from the probe input).
return false;
}
if (m_join_type == JoinType::ANTI && m_join_conditions.empty() &&
m_extra_condition == nullptr && !m_row_buffer.empty()) {
// For degenerate antijoins, we know we will never output anything
// if there's anything in the hash table, so we can end right away.
// (We also don't need to read more than one row, but
// CreateHashJoinAccessPath() has already added a LIMIT 1 for us
// in this case.)
m_state = State::END_OF_ROWS;
}
return false;
}
bool HashJoinIterator::Init() {
// If Init() is called multiple times (e.g., if hash join is inside a
// dependent subquery), we must clear the NULL row flag, as it may have been
// set by the previous execution of this hash join.
m_build_input->SetNullRowFlag(/*is_null_row=*/false);
// Invalidate the cache in all single-row index lookups below us. The previous
// execution of the hash join may have overwritten the cached value in
// EQRefIterator with a value from a different row, and the next read from the
// EQRefIterator must read the correct value from the index.
for (AccessPath *lookup : m_single_row_index_lookups) {
lookup->eq_ref().ref->key_err = true;
}
// If we are entirely in-memory and the JOIN we are part of hasn't been
// asked to clear its hash tables since last time, we can reuse the table
// without having to rebuild it. This is useful if we are on the right side
// of a nested loop join, ie., we might be scanned multiple times.
//
// Note that this only ever happens in the hypergraph optimizer; see comments
// in CreateIteratorFromAccessPath().
if (m_row_buffer.Initialized() &&
(m_hash_join_type == HashJoinType::IN_MEMORY ||
(m_hash_join_type == HashJoinType::SPILL_TO_DISK &&
m_chunk_files_on_disk.empty())) &&
m_hash_table_generation != nullptr &&
*m_hash_table_generation == m_last_hash_table_generation) {
m_probe_row_match_flag = false;
m_probe_chunk_current_row = 0;
m_current_chunk = -1;
m_hash_join_type = HashJoinType::IN_MEMORY;
if (m_join_type == JoinType::ANTI && m_join_conditions.empty() &&
m_extra_condition == nullptr && !m_row_buffer.empty()) {
// See below.
m_state = State::END_OF_ROWS;
return false;
} else {
m_state = State::READING_ROW_FROM_PROBE_ITERATOR;
m_probe_input->EndPSIBatchModeIfStarted();
return InitProbeIterator();
}
}
if (m_first_input == HashJoinInput::kBuild) {
// Prepare to read the build input into the hash map.
m_build_input_tables.PrepareForRequestRowId();
if (m_build_input->Init()) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
}
// We always start out by doing everything in memory.
m_hash_join_type = HashJoinType::IN_MEMORY;
m_write_to_probe_row_saving = false;
m_build_iterator_has_more_rows = true;
m_probe_input->EndPSIBatchModeIfStarted();
m_probe_row_match_flag = false;
// Set up the buffer that is used when
// a) moving a row between the tables' record buffers, and,
// b) when constructing a join key from join conditions.
size_t upper_row_size = 0;
if (!m_build_input_tables.has_blob_column()) {
upper_row_size =
pack_rows::ComputeRowSizeUpperBoundSansBlobs(m_build_input_tables);
}
if (!m_probe_input_tables.has_blob_column()) {
upper_row_size =
std::max(upper_row_size,
ComputeRowSizeUpperBoundSansBlobs(m_probe_input_tables));
}
if (m_temporary_row_and_join_key_buffer.reserve(upper_row_size)) {
my_error(ER_OUTOFMEMORY, MYF(0), upper_row_size);
return true; // oom
}
// If any of the tables contains a geometry column, we must ensure that
// the geometry data is copied to the row buffer (see
// Field_geom::store_internal) instead of only setting the pointer to the
// data. This is needed if the hash join spills to disk; when we read a row
// back from chunk file, row data is stored in a temporary buffer. If not told
// otherwise, Field_geom::store_internal will only store the pointer to the
// data, and not the data itself. The data this field points to will then
// become invalid when the temporary buffer is used for something else.
MarkCopyBlobsIfTableContainsGeometry(m_probe_input_tables);
MarkCopyBlobsIfTableContainsGeometry(m_build_input_tables);
// Close any leftover files from previous iterations.
m_chunk_files_on_disk.clear();
m_build_chunk_current_row = 0;
m_probe_chunk_current_row = 0;
m_current_chunk = -1;
m_probe_input_tables.PrepareForRequestRowId();
if (m_first_input == HashJoinInput::kProbe) {
const bool error = [&]() {
if (ReadFirstProbeRow()) {
return true;
} else if (m_state == State::END_OF_ROWS) {
return false;
} else {
return m_build_input->Init() || InitHashTable();
}
}();
assert(!error || thd()->is_error() ||
thd()->killed); // my_error should have been called.
if (m_state == State::END_OF_ROWS || error) {
m_probe_input->EndPSIBatchModeIfStarted();
}
return error;
} else { // Start with 'build' input.
if (InitHashTable()) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
return m_state == State::END_OF_ROWS ? false : InitProbeIterator();
}
}
// Construct a join key from a list of join conditions, where the join key from
// each join condition is concatenated together in the output buffer
// "join_key_buffer". The function returns true if a SQL NULL value is found.
static bool ConstructJoinKey(
THD *thd, const Prealloced_array<HashJoinCondition, 4> &join_conditions,
table_map tables_bitmap, String *join_key_buffer) {
join_key_buffer->length(0);
for (const HashJoinCondition &hash_join_condition : join_conditions) {
if (hash_join_condition.join_condition()->append_join_key_for_hash_join(
thd, tables_bitmap, hash_join_condition, join_conditions.size() > 1,
join_key_buffer)) {
// The join condition returned SQL NULL.
return true;
}
if (thd->is_error()) return true;
}
return false;
}
// Write a single row to a HashJoinChunk. The row must lie in the record buffer
// (record[0]) for each involved table. The row is put into one of the chunks in
// the input vector "chunks"; which chunk to use is decided by the hash value of
// the join attribute.
static bool WriteRowToChunk(
THD *thd, Mem_root_array<ChunkPair> *chunks, bool write_to_build_chunk,
const pack_rows::TableCollection &tables,
const Prealloced_array<HashJoinCondition, 4> &join_conditions,
bool row_has_match, bool store_row_with_null_in_join_key,
String *join_key_and_row_buffer) {
assert(!thd->is_error());
const bool null_in_join_key = ConstructJoinKey(
thd, join_conditions, tables.tables_bitmap(), join_key_and_row_buffer);
if (thd->is_error()) return true;
if (null_in_join_key && !store_row_with_null_in_join_key) {
// NULL values will never match in a inner join or a semijoin. The optimizer
// will often set up a NULL filter for inner joins, but not in all cases. So
// we must handle this gracefully instead of asserting.
return false;
}
const uint64_t join_key_hash =
join_key_and_row_buffer->length() == 0
? kZeroKeyLengthHash
: MY_XXH64(join_key_and_row_buffer->ptr(),
join_key_and_row_buffer->length(),
HashJoinIterator::kChunkPartitioningHashSeed);
assert(std::has_single_bit(chunks->size())); // size() is a power of two.
// Since we know that the number of chunks will be a power of two, do a
// bitwise AND instead of (join_key_hash % chunks->size()).
const size_t chunk_index = join_key_hash & (chunks->size() - 1);
ChunkPair &chunk_pair = (*chunks)[chunk_index];
if (write_to_build_chunk) {
return chunk_pair.build_chunk.WriteRowToChunk(join_key_and_row_buffer,
row_has_match);
} else {
return chunk_pair.probe_chunk.WriteRowToChunk(join_key_and_row_buffer,
row_has_match);
}
}
bool HashJoinIterator::WriteBuildTableToChunkFiles() {
for (;;) { // Termination condition within loop.
int res = m_build_input->Read();
if (res == 1) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
if (res == -1) {
return false; // EOF; success.
}
assert(res == 0);
m_build_input_tables.RequestRowId();
if (WriteRowToChunk(thd(), &m_chunk_files_on_disk,
/*write_to_build_chunk=*/true, m_build_input_tables,
m_join_conditions,
/*row_has_match=*/false,
/*store_row_with_null_in_join_key=*/false,
&m_temporary_row_and_join_key_buffer)) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
}
}
// Initialize all HashJoinChunks for both inputs. When estimating how many
// chunks we need, we first assume that the estimated row count from the planner
// is correct. Furthermore, we assume that the current row buffer is
// representative of the overall row density, so that if we divide the
// (estimated) number of remaining rows by the number of rows read so far and
// use that as our chunk count, we will get on-disk chunks that each will fit
// into RAM when we read them back later. As a safeguard, we subtract a small
// percentage (reduction factor), since we'd rather get one or two extra chunks
// instead of having to re-read the probe input multiple times. We limit the
// number of chunks per input, so we don't risk hitting the server's limit for
// number of open files.
static bool InitializeChunkFiles(size_t estimated_rows_produced_by_join,
size_t rows_in_hash_table,
const pack_rows::TableCollection &probe_tables,
const pack_rows::TableCollection &build_tables,
bool include_match_flag_for_probe,
Mem_root_array<ChunkPair> *chunk_pairs) {
constexpr double kReductionFactor = 0.9;
const double reduced_rows_in_hash_table =
std::max<double>(1, rows_in_hash_table * kReductionFactor);
// Avoid underflow, since the hash table may contain more rows than the
// estimate from the planner.
const size_t remaining_rows =
std::max(rows_in_hash_table, estimated_rows_produced_by_join) -
rows_in_hash_table;
const size_t chunks_needed = std::max<size_t>(
1, std::ceil(remaining_rows / reduced_rows_in_hash_table));
const size_t num_chunks =
std::min(HashJoinIterator::kMaxChunks, chunks_needed);
// Ensure that the number of chunks is always a power of two. This allows
// us to do some optimizations when calculating which chunk a row should
// be placed in.
const size_t num_chunks_pow_2 = std::bit_ceil(num_chunks);
assert(chunk_pairs != nullptr && chunk_pairs->empty());
if (chunk_pairs->resize(num_chunks_pow_2)) {
return true;
}
for (ChunkPair &chunk_pair : *chunk_pairs) {
if (chunk_pair.build_chunk.Init(build_tables, /*uses_match_flags=*/false) ||
chunk_pair.probe_chunk.Init(probe_tables,
include_match_flag_for_probe)) {
my_error(ER_TEMP_FILE_WRITE_FAILURE, MYF(0));
return true;
}
}
return false;
}
bool HashJoinIterator::BuildHashTable() {
if (!m_build_iterator_has_more_rows) {
m_state = State::END_OF_ROWS;
return false;
}
// Restore the last row that was inserted into the row buffer. This is
// necessary if the build input is a nested loop with a filter on the inner
// side, like this:
//
// +---Hash join---+
// | |
// Nested loop t1
// | |
// t3 Filter: (t3.i < t2.i)
// |
// t2
//
// If the hash join is not allowed to spill to disk, we may need to re-fill
// the hash table multiple times. If the nested loop happens to be in the
// state "reading inner rows" when a re-fill is triggered, the filter will
// look at the data in t3's record buffer in order to evaluate the filter. The
// row in t3's record buffer may be any of the rows that was stored in the
// hash table, and not the last row returned from t3. To ensure that the
// filter is looking at the correct data, restore the last row that was
// inserted into the hash table.
if (m_row_buffer.Initialized() && m_row_buffer.LastRowStored() != nullptr) {
LoadImmutableStringIntoTableBuffers(m_build_input_tables,
m_row_buffer.LastRowStored());
}
if (InitRowBuffer()) {
return true;
}
const bool reject_duplicate_keys = RejectDuplicateKeys();
PFSBatchMode batch_mode(m_build_input.get());
for (;;) { // Termination condition within loop.
int res = m_build_input->Read();
if (res == 1) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
if (res == -1) {
m_build_iterator_has_more_rows = false;
// If the build input was empty, the result of inner joins and semijoins
// will also be empty. However, if the build input was empty, the output
// of antijoins will be all the rows from the probe input.
if (m_row_buffer.empty() && m_join_type != JoinType::ANTI &&
m_join_type != JoinType::OUTER) {
m_state = State::END_OF_ROWS;
return false;
}
// As we managed to read to the end of the build iterator, this is the
// last time we will read from the probe iterator. Thus, we can disable
// probe row saving again (it was enabled if the hash table ran out of
// memory _and_ we were not allowed to spill to disk).
m_write_to_probe_row_saving = false;
SetReadingProbeRowState();
return false;
}
assert(res == 0);
m_build_input_tables.RequestRowId();
const hash_join_buffer::StoreRowResult store_row_result =
m_row_buffer.StoreRow(thd(), reject_duplicate_keys);
switch (store_row_result) {
case hash_join_buffer::StoreRowResult::ROW_STORED:
break;
case hash_join_buffer::StoreRowResult::BUFFER_FULL: {
// The row buffer is full, so start spilling to disk (if allowed). Note
// that the row buffer checks for OOM _after_ the row was inserted, so
// we should always manage to insert at least one row.
assert(!m_row_buffer.empty());
// If we are not allowed to spill to disk, just go on to reading from
// the probe iterator.
if (!m_allow_spill_to_disk) {
if (m_join_type != JoinType::INNER) {
// Enable probe row saving, so that unmatched probe rows are written
// to the probe row saving file. After the next refill of the hash
// table, we will read rows from the probe row saving file, ensuring
// that we only read unmatched probe rows.
InitWritingToProbeRowSavingFile();
}
SetReadingProbeRowState();
return false;
}
if (InitializeChunkFiles(
m_estimated_build_rows, m_row_buffer.size(),
m_probe_input_tables, m_build_input_tables,
/*include_match_flag_for_probe=*/m_join_type == JoinType::OUTER,
&m_chunk_files_on_disk)) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
// Write out the remaining rows from the build input out to chunk files.
// The probe input will be written out to chunk files later; we will do
// it _after_ we have checked the probe input for matches against the
// rows that are already written to the hash table. An alternative
// approach would be to write out the remaining rows from the build
// _and_ the rows that already are in the hash table. In that case, we
// could also write out the entire probe input to disk here as well. But
// we don't want to waste the rows that we already have stored in
// memory.
//
// We never write out rows with NULL in condition for the build/right
// input, as these rows will never match in a join condition.
if (WriteBuildTableToChunkFiles()) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
// Flush and position all chunk files from the build input at the
// beginning.
for (ChunkPair &chunk_pair : m_chunk_files_on_disk) {
if (chunk_pair.build_chunk.Rewind()) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
}
SetReadingProbeRowState();
return false;
}
case hash_join_buffer::StoreRowResult::FATAL_ERROR:
// An unrecoverable error. Most likely, malloc failed, so report OOM.
// Note that we cannot say for sure how much memory we tried to allocate
// when failing, so just report 'join_buffer_size' as the amount of
// memory we tried to allocate.
my_error(ER_OUTOFMEMORY, MYF(ME_FATALERROR),
thd()->variables.join_buff_size);
return true;
}
}
}
bool HashJoinIterator::ReadNextHashJoinChunk() {
// See if we should proceed to the next pair of chunk files. In general,
// it works like this; if we are at the end of the build chunk, move to the
// next. If not, keep reading from the same chunk pair. We also move to the
// next pair of chunk files if the probe chunk file is empty.
const bool move_to_next_chunk =
// We are before the first chunk, so move to the next.
m_current_chunk == -1 ||
// We are done reading all the rows from the build chunk.
m_build_chunk_current_row >=
m_chunk_files_on_disk[m_current_chunk].build_chunk.NumRows() ||
// The probe chunk file is empty.
m_chunk_files_on_disk[m_current_chunk].probe_chunk.NumRows() == 0;
if (move_to_next_chunk) {
m_current_chunk++;
m_build_chunk_current_row = 0;
// Since we are moving to a new set of chunk files, ensure that we read from
// the chunk file and not from the probe row saving file.
m_read_from_probe_row_saving = false;
}
if (m_current_chunk == static_cast<int>(m_chunk_files_on_disk.size())) {
// We have moved past the last chunk, so we are done.
m_state = State::END_OF_ROWS;
return false;
}
if (InitRowBuffer()) {
return true;
}
HashJoinChunk &build_chunk =
m_chunk_files_on_disk[m_current_chunk].build_chunk;
const bool reject_duplicate_keys = RejectDuplicateKeys();
for (; m_build_chunk_current_row < build_chunk.NumRows();
++m_build_chunk_current_row) {
// Read the next row from the chunk file, and put it in the in-memory row
// buffer. If the buffer goes full, do the probe phase against the rows we
// managed to put in the buffer and continue reading where we left in the
// next iteration.
if (build_chunk.LoadRowFromChunk(&m_temporary_row_and_join_key_buffer,
/*matched=*/nullptr)) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
hash_join_buffer::StoreRowResult store_row_result =
m_row_buffer.StoreRow(thd(), reject_duplicate_keys);
if (store_row_result == hash_join_buffer::StoreRowResult::BUFFER_FULL) {
// The row buffer checks for OOM _after_ the row was inserted, so we
// should always manage to insert at least one row.
assert(!m_row_buffer.empty());
// Since the last row read was actually stored in the buffer, increment
// the row counter manually before breaking out of the loop.
++m_build_chunk_current_row;
break;
} else if (store_row_result ==
hash_join_buffer::StoreRowResult::FATAL_ERROR) {
// An unrecoverable error. Most likely, malloc failed, so report OOM.
// Note that we cannot say for sure how much memory we tried to allocate
// when failing, so just report 'join_buffer_size' as the amount of
// memory we tried to allocate.
my_error(ER_OUTOFMEMORY, MYF(ME_FATALERROR),
thd()->variables.join_buff_size);
return true;
}
assert(store_row_result == hash_join_buffer::StoreRowResult::ROW_STORED);
}
// Prepare to do a lookup in the hash table for all rows from the probe
// chunk.
if (m_chunk_files_on_disk[m_current_chunk].probe_chunk.Rewind()) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
m_probe_chunk_current_row = 0;
SetReadingProbeRowState();
if (m_build_chunk_current_row < build_chunk.NumRows() &&
m_join_type != JoinType::INNER) {
// The build chunk did not fit into memory, causing us to refill the hash
// table once the probe input is consumed. If we don't take any special
// action, we can end up outputting the same probe row twice if the probe
// phase finds a match in both iterations through the hash table.
// By enabling probe row saving, unmatched probe rows are written to a probe
// row saving file. After the next hash table refill, we load the probe rows
// from the probe row saving file instead of from the build chunk, and thus
// ensuring that we only see unmatched probe rows. Note that we have not
// started reading probe rows yet, but we are about to do so.
InitWritingToProbeRowSavingFile();
} else {
m_write_to_probe_row_saving = false;
}
return false;
}
bool HashJoinIterator::ReadRowFromProbeIterator() {
assert(m_current_chunk == -1);
const int result = m_probe_row_read ? 0 : m_probe_input->Read();
m_probe_row_read = false;
if (result == 1) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
if (result == 0) {
m_probe_input_tables.RequestRowId();
// A row from the probe iterator is ready.
LookupProbeRowInHashTable();
if (thd()->is_error()) return true;
return false;
}
assert(result == -1);
m_probe_input->EndPSIBatchModeIfStarted();
// The probe iterator is out of rows. We may be in three different situations
// here (ordered from most common to less common):
// 1. The build input is also empty, and the join is done. The iterator state
// will go into "LOADING_NEXT_CHUNK_PAIR", and we will see that there are
// no chunk files when trying to load the next pair of chunk files.
// 2. We have degraded into an on-disk hash join, and we will now start
// reading from chunk files on disk.
// 3. The build input is not empty, and we have not degraded into an on-disk
// hash join (i.e. we were not allowed due to a LIMIT in the query),
// re-populate the hash table with the remaining rows from the build input.
if (m_allow_spill_to_disk) {
m_hash_join_type = HashJoinType::SPILL_TO_DISK;
m_state = State::LOADING_NEXT_CHUNK_PAIR;
return false;
}
m_hash_join_type = HashJoinType::IN_MEMORY_WITH_HASH_TABLE_REFILL;
if (m_write_to_probe_row_saving) {
// If probe row saving is enabled, it means that the probe row saving write
// file contains all the rows from the probe input that should be
// read/processed again. We must swap the probe row saving writing and probe
// row saving reading file _before_ calling BuildHashTable, since
// BuildHashTable may initialize (and thus clear) the probe row saving write
// file, losing any rows written to said file.
if (InitReadingFromProbeRowSavingFile()) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
}
if (BuildHashTable()) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
switch (m_state) {
case State::END_OF_ROWS:
// BuildHashTable() decided that the join is done (the build input is
// empty, and we are in an inner-/semijoin. Anti-/outer join must output
// NULL-complemented rows from the probe input).
return false;
case State::READING_ROW_FROM_PROBE_ITERATOR:
// Start reading from the beginning of the probe iterator.
return InitProbeIterator();
case State::READING_ROW_FROM_PROBE_ROW_SAVING_FILE:
// The probe row saving read file is already initialized for reading
// further up in this function.
return false;
default:
assert(false);
return true;
}
}
bool HashJoinIterator::ReadRowFromProbeChunkFile() {
assert(on_disk_hash_join() && m_current_chunk != -1);
// Read one row from the current HashJoinChunk, and put
// that row into the record buffer of the probe input table.
HashJoinChunk ¤t_probe_chunk =
m_chunk_files_on_disk[m_current_chunk].probe_chunk;
if (m_probe_chunk_current_row >= current_probe_chunk.NumRows()) {
// No more rows in the current probe chunk, so load the next chunk of
// build rows into the hash table.
if (m_write_to_probe_row_saving) {
// If probe row saving is enabled, the build chunk did not fit in memory.
// This causes us to refill the hash table with the rows from the build
// chunk that did not fit, and thus read the probe chunk multiple times.
// This can be problematic for semijoin; we do not want to output a probe
// row that has a match in both parts of the hash table. To mitigate
// this, we write probe rows that does not have a match in the hash table
// to a probe row saving file (m_probe_row_saving_write_file), and read
// from said file instead of from the probe input the next time.
if (InitReadingFromProbeRowSavingFile()) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
} else {
m_read_from_probe_row_saving = false;
}
m_state = State::LOADING_NEXT_CHUNK_PAIR;
return false;
} else if (current_probe_chunk.LoadRowFromChunk(
&m_temporary_row_and_join_key_buffer,
&m_probe_row_match_flag)) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
m_probe_chunk_current_row++;
// A row from the chunk file is ready.
LookupProbeRowInHashTable();
return false;
}
bool HashJoinIterator::ReadRowFromProbeRowSavingFile() {
// Read one row from the probe row saving file, and put that row into the
// record buffer of the probe input table.
if (m_probe_row_saving_read_file_current_row >=
m_probe_row_saving_read_file.NumRows()) {
// We are done reading all the rows from the probe row saving file. If probe
// row saving is still enabled, we have a new set of rows in the probe row
// saving write file.
if (m_write_to_probe_row_saving) {
if (InitReadingFromProbeRowSavingFile()) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
} else {
m_read_from_probe_row_saving = false;
}
// If we are executing an on-disk hash join, go and load the next pair of
// chunk files. If we are doing everything in memory with multiple hash
// table refills, go and refill the hash table.
if (m_hash_join_type == HashJoinType::SPILL_TO_DISK) {
m_state = State::LOADING_NEXT_CHUNK_PAIR;
return false;
}
assert(m_hash_join_type == HashJoinType::IN_MEMORY_WITH_HASH_TABLE_REFILL);
// No more rows in the probe row saving file.
if (BuildHashTable()) {
assert(thd()->is_error() ||
thd()->killed); // my_error should have been called.
return true;
}
if (m_state == State::END_OF_ROWS) {
// BuildHashTable() decided that the join is done (the build input is
// empty).
return false;
}
SetReadingProbeRowState();
return false;
} else if (m_probe_row_saving_read_file.LoadRowFromChunk(
&m_temporary_row_and_join_key_buffer,
&m_probe_row_match_flag)) {
assert(thd()->is_error()); // my_error should have been called.
return true;
}
m_probe_row_saving_read_file_current_row++;
// A row from the chunk file is ready.
LookupProbeRowInHashTable();
return false;
}
void HashJoinIterator::LookupProbeRowInHashTable() {
if (m_join_conditions.empty()) {
// Skip the call to find() in case we don't have any join conditions.
// TODO(sgunders): Is this relevant for performance anymore?
m_current_row =
m_row_buffer.first_row().value_or(LinkedImmutableString{nullptr});
m_state = State::READING_FIRST_ROW_FROM_HASH_TABLE;
return;
}
// Extract the join key from the probe input, and use that key as the lookup
// key in the hash table.
bool null_in_join_key = ConstructJoinKey(
thd(), m_join_conditions, m_probe_input_tables.tables_bitmap(),
&m_temporary_row_and_join_key_buffer);
if (null_in_join_key) {
if (m_join_type == JoinType::ANTI || m_join_type == JoinType::OUTER) {
// SQL NULL was found, and we will never find a matching row in the hash
// table. Let us indicate that, so that a null-complemented row is
// returned.
m_current_row = LinkedImmutableString{nullptr};
m_state = State::READING_FIRST_ROW_FROM_HASH_TABLE;
} else {
SetReadingProbeRowState();
}
return;
}
hash_join_buffer::Key key{m_temporary_row_and_join_key_buffer.ptr(),
m_temporary_row_and_join_key_buffer.length()};
m_current_row =
m_row_buffer.find(key).value_or(LinkedImmutableString{nullptr});
m_state = State::READING_FIRST_ROW_FROM_HASH_TABLE;
}
int HashJoinIterator::ReadJoinedRow() {
DBUG_EXECUTE_IF("kill_query_in_hash_join_iterator",
thd()->killed = THD::KILL_QUERY;);
if (m_current_row == nullptr) {
// Signal that we have reached the end of hash table entries. Let the caller
// determine which state we end up in.
return -1;
}
// A row is ready in the hash table, so put the data from the hash table row
// into the record buffers of the build input tables.
LoadImmutableStringIntoTableBuffers(m_build_input_tables, m_current_row);
return 0;
}
bool HashJoinIterator::WriteProbeRowToDiskIfApplicable() {
// If we are spilling to disk, we need to match the row against rows from
// the build input that are written out to chunk files. So we need to write
// the probe row to chunk files as well. Semijoin/antijoin has an exception to
// this; if the probe input already got a match in the hash table, we do not
// need to write it out to disk. Outer joins should always write the row out
// to disk, since the probe/left input should return NULL-complemented rows
// even if the join condition contains SQL NULL.
if (m_state == State::READING_FIRST_ROW_FROM_HASH_TABLE) {
const bool found_match = m_current_row != nullptr;
if ((m_join_type == JoinType::INNER || m_join_type == JoinType::OUTER) ||
!found_match) {
if (on_disk_hash_join() && m_current_chunk == -1) {
// For inner joins and semijoins, we can skip probe rows that have a
// NULL in the join key, unless the join condition uses NULL-safe equal
// (<=>), because we know that it won't have any match in the build
// table. For left outer join and antijoin, however, rows in the
// outer/probe table which have no match in the inner/build table, will
// be part of the join result, so we can't skip rows with NULLs for
// those join types. Hence, store_row_with_null_in_join_key must be true
// for left outer join and antijoin.
const bool store_row_with_null_in_join_key =
m_join_type == JoinType::OUTER || m_join_type == JoinType::ANTI;
if (WriteRowToChunk(thd(), &m_chunk_files_on_disk,
/*write_to_build_chunk=*/false,
m_probe_input_tables, m_join_conditions,
found_match, store_row_with_null_in_join_key,
&m_temporary_row_and_join_key_buffer)) {
return true;
}
}
if (m_write_to_probe_row_saving &&
m_probe_row_saving_write_file.WriteRowToChunk(
&m_temporary_row_and_join_key_buffer,
found_match || m_probe_row_match_flag)) {