forked from mysql/mysql-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_simplification.cc
1049 lines (956 loc) · 44 KB
/
graph_simplification.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (c) 2021, 2024, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/join_optimizer/graph_simplification.h"
#include <assert.h>
#include <stdint.h>
#include <algorithm>
#include <bit>
#include <cmath>
#include <ostream>
#include <string>
#include <utility>
#include "my_alloc.h"
#include "my_base.h"
#include "sql/handler.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/cost_model.h"
#include "sql/join_optimizer/hypergraph.h"
#include "sql/join_optimizer/make_join_hypergraph.h"
#include "sql/join_optimizer/node_map.h"
#include "sql/join_optimizer/online_cycle_finder.h"
#include "sql/join_optimizer/optimizer_trace.h"
#include "sql/join_optimizer/print_utils.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/join_optimizer/subgraph_enumeration.h"
#include "sql/join_optimizer/trivial_receiver.h"
#include "sql/mem_root_allocator.h"
#include "sql/mem_root_array.h"
#include "sql/sql_array.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/table.h"
using hypergraph::Hyperedge;
using hypergraph::Hypergraph;
using hypergraph::NodeMap;
using std::fill_n;
using std::has_single_bit;
using std::max;
using std::min;
using std::string;
using std::swap;
namespace {
/**
Returns whether A is already a part of B, ie., whether it is impossible to
execute B before A. E.g., for t1 LEFT JOIN (t2 JOIN t3), the t2-t3 join
will be part of the t1-{t2,t3} hyperedge, and this will return true.
Note that this definition is much more lenient than the one in the paper
(Figure 4), which appears to be wrong.
*/
bool IsSubjoin(Hyperedge a, Hyperedge b) {
return IsSubset(a.left | a.right, b.left | b.right);
}
// Check if combining “left_component” with “right_component” would violate any
// conflict rules.
bool CombiningWouldViolateConflictRules(
const Mem_root_array<ConflictRule> &conflict_rules, const int *in_component,
int left_component, int right_component) {
for (const ConflictRule &cr : conflict_rules) {
bool applies = false;
for (int node_idx : BitsSetIn(cr.needed_to_activate_rule)) {
if (in_component[node_idx] == left_component ||
in_component[node_idx] == right_component) {
applies = true;
break;
}
}
if (applies) {
for (int node_idx : BitsSetIn(cr.required_nodes)) {
if (in_component[node_idx] != left_component &&
in_component[node_idx] != right_component) {
return true;
}
}
}
}
return false;
}
// For a (nonempty) set of tables, find out which component they belong to.
// Will return -1 if they are not all in the same component (or if they
// all belong to component -1), otherwise the component they belong to.
//
// The FindLowestBitSet() seems to be a (small) choke point for the algorithm,
// at least on some CPUs. If we need more speedups, it could be an idea
// to pre-cache the value of that for all hyperedges (as we only ever
// expand hyperedges, and just need any arbitrary bit from them,
// we don't need to invalidate the information).
int GetComponent(const NodeMap *components, const int *in_component,
NodeMap tables) {
assert(tables != 0);
int component = in_component[FindLowestBitSet(tables)];
if (component >= 0 &&
IsSubset(tables, components[static_cast<unsigned>(component)])) {
return component;
} else {
return -1;
}
}
/**
Helper algorithm for GetCardinality() and GraphIsJoinable();
given a set of components (each typically connecting a single table
at the start), connects them incrementally up through joins and calls
a given callback every time we do it. The callback must be of type
bool callback(int left_component, int right_component,
const JoinPredicate &pred, int num_changed);
where num_changed is the number of tables that was in right_component
but has now been combined with the ones in left_component and were
moved there (we always move into the component with the lowest index).
The algorithm ends when callback() returns true, or if no more joins
are possible.
In theory, it would be possible to accelerate this mechanism by means of
the standard union-find algorithm (see e.g.
https://en.wikipedia.org/wiki/Disjoint-set_data_structure), but since
MAX_TABLES is so small, just using bitsets seems to work just as well.
And instead of spending time on that, it would probably be better to
find a complete join inference algorithm that would make GraphIsJoinable()
obsolete and thus reduce the number of calls to this function.
*/
template <class Func>
void ConnectComponentsThroughJoins(const JoinHypergraph &graph,
const OnlineCycleFinder &cycles,
Func &&callback_on_join, NodeMap *components,
int *in_component,
NodeMap *lateral_dependencies) {
bool did_anything;
do {
did_anything = false;
// Traverse joins from smaller to larger (as given by the topological
// sorting that we already have), to increase the probability that we'll get
// through the list of joins in a single pass.
for (int edge_idx : cycles.order()) {
const Hyperedge e = graph.graph.edges[edge_idx * 2];
int left_component = GetComponent(components, in_component, e.left);
if (left_component == -1) {
// We cannot apply this (yet).
continue;
}
if (Overlaps(e.right, components[left_component])) {
// This join is already applied.
continue;
}
if (Overlaps(e.right, lateral_dependencies[left_component]) &&
!OperatorIsCommutative(*graph.edges[edge_idx].expr)) {
// A lateral dependency in "left" requires "right" to be on the left
// side, but we're not free to reorder them due to a non-commutative
// operator. So we cannot connect the components with this edge.
continue;
}
int right_component = GetComponent(components, in_component, e.right);
if (right_component == -1 ||
CombiningWouldViolateConflictRules(
graph.edges[edge_idx].expr->conflict_rules, in_component,
left_component, right_component)) {
// We cannot apply this (yet).
continue;
}
// Combine the two components into the one that is numerically smaller.
// This means that if everything goes into one component, it will be
// component zero, which we can keep track of the cardinality of.
if (right_component < left_component) {
swap(left_component, right_component);
}
int num_changed = 0;
for (int table_idx : BitsSetIn(components[right_component])) {
in_component[table_idx] = left_component;
++num_changed;
}
assert(num_changed > 0);
const NodeMap combined_nodes =
components[left_component] | components[right_component];
components[left_component] = combined_nodes;
// The lateral dependencies of the combined component include all the
// lateral dependencies of the original components, except those that were
// resolved in this join.
lateral_dependencies[left_component] =
(lateral_dependencies[left_component] |
lateral_dependencies[right_component]) &
~combined_nodes;
if (callback_on_join(left_component, right_component,
graph.edges[edge_idx], num_changed)) {
return;
}
did_anything = true;
}
} while (did_anything);
}
/**
For a given set of tables, try to estimate the cardinality of joining them
together. (This essentially simulates the cardinality we'd get out of
CostingReceiver, but without computing any costs or actual AccessPaths.)
This is a fairly expensive operation since we need to iterate over all
hyperedges several times, so we cache the cardinalities for each hyperedge
in GraphSimplifier's constructor and then reuse them until the hyperedge
is changed. We could probably go even further by having a cache based on
tables_to_join, as many of the hyperedges will share endpoints, but it does
not seem to be worth it (based on the microbenchmark profiles).
*/
double GetCardinality(THD *thd, NodeMap tables_to_join,
const JoinHypergraph &graph,
const OnlineCycleFinder &cycles) {
NodeMap components[MAX_TABLES]; // Which tables belong to each component.
int in_component[MAX_TABLES]; // Which component each table belongs to.
double component_cardinality[MAX_TABLES];
NodeMap lateral_dependencies[MAX_TABLES];
fill_n(&in_component[0], graph.nodes.size(), -1);
// Start with each (relevant) table in a separate component.
int num_components = 0;
for (int node_idx : BitsSetIn(tables_to_join)) {
const JoinHypergraph::Node &node = graph.nodes[node_idx];
components[num_components] = TableBitmap(node_idx);
in_component[node_idx] = num_components;
// Assume we have to read at least one row from each table, so that we don't
// end up with zero costs in the rudimentary cost model used by the graph
// simplification.
component_cardinality[num_components] =
max(ha_rows{1}, node.table()->file->stats.records);
lateral_dependencies[num_components] = node.lateral_dependencies();
++num_components;
}
uint64_t active_components = BitsBetween(0, num_components);
// Apply table filters, and also constant predicates.
//
// Note that we don't apply the range optimizer here to improve
// the quality of the selectivities (even if we've already run it
// on the previous graph). It's probably not that important for
// our heuristics, but if it turns out to be critical, we could
// arrange for all single tables to be run before simplification
// (on the old graph), and then reuse that information.
for (size_t i = 0; i < graph.num_where_predicates; ++i) {
const Predicate &pred = graph.predicates[i];
if (pred.total_eligibility_set == 0) {
// Just put them on node 0 for simplicity;
// we only care about the total selectivity,
// so it doesn't matter when we apply them.
component_cardinality[0] *= pred.selectivity;
} else if (IsSubset(pred.total_eligibility_set, tables_to_join) &&
has_single_bit(pred.total_eligibility_set)) {
int node_idx = FindLowestBitSet(pred.total_eligibility_set);
component_cardinality[node_idx] *= pred.selectivity;
}
}
if (num_components == 1) {
return component_cardinality[0];
}
uint64_t multiple_equality_bitmap = 0;
auto func = [&](int left_component, int right_component,
const JoinPredicate &pred, int num_changed [[maybe_unused]]) {
double cardinality =
FindOutputRowsForJoin(thd, component_cardinality[left_component],
component_cardinality[right_component], &pred);
// Mark off which multiple equalities we've seen.
for (int pred_idx = pred.expr->join_predicate_first;
pred_idx < pred.expr->join_predicate_last; ++pred_idx) {
int source_multiple_equality_idx =
graph.predicates[pred_idx].source_multiple_equality_idx;
if (source_multiple_equality_idx != -1) {
multiple_equality_bitmap |= uint64_t{1} << source_multiple_equality_idx;
}
}
// Apply all newly applicable WHERE predicates.
for (size_t i = 0; i < graph.num_where_predicates; ++i) {
const Predicate &where_pred = graph.predicates[i];
if (IsSubset(where_pred.total_eligibility_set, tables_to_join) &&
Overlaps(where_pred.total_eligibility_set,
components[left_component]) &&
Overlaps(where_pred.total_eligibility_set,
components[right_component]) &&
(where_pred.source_multiple_equality_idx == -1 ||
!IsBitSet(where_pred.source_multiple_equality_idx,
multiple_equality_bitmap))) {
cardinality *= where_pred.selectivity;
if (where_pred.source_multiple_equality_idx != -1) {
multiple_equality_bitmap |=
uint64_t{1} << where_pred.source_multiple_equality_idx;
}
}
}
// Write the new result into the newly combined component.
component_cardinality[left_component] = cardinality;
active_components &= ~(uint64_t{1} << right_component);
return active_components == 0b1;
};
ConnectComponentsThroughJoins(graph, cycles, std::move(func), components,
in_component, lateral_dependencies);
// In rare situations, we could be left in a situation where an edge
// doesn't contain a joinable set (ie., they are joinable, but only through
// a hyperedge containing tables outside the given set). The paper
// doesn't mention this at all, but as a hack, we simply combine them
// as if they were an inner-equijoin (ie., selectivity 0.1). We could
// also have chosen to take the maximum cardinality over all the components
// or something similar, but this seems more neutral.
for (int component_idx : BitsSetIn(active_components & ~1)) {
component_cardinality[0] *= component_cardinality[component_idx] * 0.1;
}
return component_cardinality[0];
}
/**
A special, much faster version of GetCardinality() that can be used
when joining two partitions along a known edge. It reuses the existing
cardinalities, and just applies the single edge and any missing WHERE
predicates; this allows it to just make a single pass over those predicates
and do no other work.
*/
double GetCardinalitySingleJoin(THD *thd, NodeMap left, NodeMap right,
double left_rows, double right_rows,
const JoinHypergraph &graph,
const JoinPredicate &pred) {
assert(!Overlaps(left, right));
double cardinality = FindOutputRowsForJoin(thd, left_rows, right_rows, &pred);
// Mark off which multiple equalities we've seen.
uint64_t multiple_equality_bitmap = 0;
for (int pred_idx = pred.expr->join_predicate_first;
pred_idx < pred.expr->join_predicate_last; ++pred_idx) {
int source_multiple_equality_idx =
graph.predicates[pred_idx].source_multiple_equality_idx;
if (source_multiple_equality_idx != -1) {
multiple_equality_bitmap |= uint64_t{1} << source_multiple_equality_idx;
}
}
// Apply all newly applicable WHERE predicates.
for (size_t i = 0; i < graph.num_where_predicates; ++i) {
const Predicate &where_pred = graph.predicates[i];
if (IsSubset(where_pred.total_eligibility_set, left | right) &&
Overlaps(where_pred.total_eligibility_set, left) &&
Overlaps(where_pred.total_eligibility_set, right) &&
(where_pred.source_multiple_equality_idx == -1 ||
!IsBitSet(where_pred.source_multiple_equality_idx,
multiple_equality_bitmap))) {
cardinality *= where_pred.selectivity;
if (where_pred.source_multiple_equality_idx != -1) {
multiple_equality_bitmap |= uint64_t{1}
<< where_pred.source_multiple_equality_idx;
}
}
}
return cardinality;
}
/**
Initialize a DAG containing all inferred join dependencies from the
hypergraph. These are join dependencies that we cannot violate no matter
what we do, so we need to make sure we do not try to force join reorderings
that would be in conflict with them (whether directly or transitively) --
and the returned OnlineCycleFinder allows us to check out exactly that,
and also keep maintaining the DAG as we impose more orderings on the graph.
This graph doesn't necessarily contain all dependencies inherent in the
hypergraph, but it usually contains most of them. For instance, {t2,t3}-t4 is
not a subjoin of t1-{t2,t4}, but must often be ordered before it anyway,
since t2 and t4 are on opposite sides of the former join.
See GraphSimplificationTest.IndirectHierarcicalJoins for a concrete test.
Also, in the case of cyclic hypergraphs, the constraints in this DAG may be
too strict, since it doesn't take into account that in cyclic hypergraphs we
don't end up using all the edges (since the cycles are caused by redundant
edges). So even if a constraint cannot be added because it would cause a cycle
in the DAG, it doesn't mean that the hypergraph is unjoinable, because one of
the edges involved in the cycle might be redundant and can be bypassed. See
GraphSimplificationTest.CycleNeighboringHyperedges for a concrete test.
We really ought to fix this, but it's not obvious how to implement it;
it seems very difficult to create a test that catches all cases
_and_ does not have any false positives in the presence of cycles
(which often enable surprising orderings). Because it doesn't, we need
additional and fairly expensive checks later on; see comments on
GraphIsJoinable().
*/
OnlineCycleFinder FindJoinDependencies(const Hypergraph &graph,
MEM_ROOT *mem_root) {
const Mem_root_array<Hyperedge> &edges = graph.edges;
OnlineCycleFinder cycles(mem_root, edges.size() / 2);
for (size_t edge1_idx = 0; edge1_idx < edges.size() / 2; ++edge1_idx) {
const Hyperedge edge1 = edges[edge1_idx * 2];
for (size_t edge2_idx = 0; edge2_idx < edges.size() / 2; ++edge2_idx) {
const Hyperedge edge2 = edges[edge2_idx * 2];
if (edge1_idx != edge2_idx && IsSubjoin(edge1, edge2)) {
bool added_cycle [[maybe_unused]] =
cycles.AddEdge(edge1_idx, edge2_idx);
assert(!added_cycle);
}
}
}
return cycles;
}
// Check if the given hypergraph has fewer than “subgraph_pair_limit”
// subgraph pairs, by simply running DPhyp over it.
bool IsQueryGraphSimpleEnough(THD *thd [[maybe_unused]],
const JoinHypergraph &graph,
int subgraph_pair_limit, MEM_ROOT *mem_root,
int *seen_subgraph_pairs) {
bool error;
{
TrivialReceiver counting_receiver(graph, mem_root, subgraph_pair_limit);
error = EnumerateAllConnectedPartitions(graph.graph, &counting_receiver);
assert(!thd->is_error());
if (!error) {
*seen_subgraph_pairs = counting_receiver.seen_subgraph_pairs;
}
}
mem_root->ClearForReuse();
return !error;
}
struct JoinStatus {
double cost;
double num_output_rows;
};
/**
Simulate the (total) costs and cardinalities of joining two sets of tables,
without actually having an AccessPath for each (which is a bit heavyweight
for just cost and cardinality). Returns the same type, so that we can
succinctly simulate joining this to yet more tables.
The paper generally uses merge join as the cost function heuristic,
but since we don't have merge join, and nested-loop joins are heavily
dependent on context such as available indexes, we use instead our standard
hash join estimation here. When we get merge joins, we should probably
have a look to see whether switching to its cost function here makes sense.
(Of course, we don't know what join type we will _actually_ be using until
we're done with the entire planning!)
NOTE: Keep this in sync with the cost estimation in ProposeHashJoin().
*/
JoinStatus SimulateJoin(THD *thd, JoinStatus left, JoinStatus right,
const JoinPredicate &pred) {
// If the build cost per row is higher than the probe cost per row, it is
// beneficial to use the smaller table as build table. Reorder to get the
// lower cost if the join is commutative and allows reordering.
static_assert(kHashBuildOneRowCost >= kHashProbeOneRowCost);
if (OperatorIsCommutative(*pred.expr) &&
left.num_output_rows < right.num_output_rows) {
swap(left, right);
}
double num_output_rows = FindOutputRowsForJoin(thd, left.num_output_rows,
right.num_output_rows, &pred);
double build_cost = right.num_output_rows * kHashBuildOneRowCost;
double join_cost = build_cost + left.num_output_rows * kHashProbeOneRowCost +
num_output_rows * kHashReturnOneRowCost;
return {left.cost + right.cost + join_cost, num_output_rows};
}
// Helper overloads to call SimulateJoin() for base cases,
// where we don't really care about the cost that went into them
// (they are assumed to be zero).
JoinStatus SimulateJoin(THD *thd, double left_rows, JoinStatus right,
const JoinPredicate &pred) {
return SimulateJoin(thd, JoinStatus{0.0, left_rows}, right, pred);
}
JoinStatus SimulateJoin(THD *thd, JoinStatus left, double right_rows,
const JoinPredicate &pred) {
return SimulateJoin(thd, left, JoinStatus{0.0, right_rows}, pred);
}
JoinStatus SimulateJoin(THD *thd, double left_rows, double right_rows,
const JoinPredicate &pred) {
return SimulateJoin(thd, JoinStatus{0.0, left_rows},
JoinStatus{0.0, right_rows}, pred);
}
/**
See if a given hypergraph is impossible to join, in any way.
This is a hack to work around the fact that our inference of implicit
join ordering from the hypergraph is imperfect, so that we can end up
creating an impossible situation (try to force join A before join B,
but B must be done before A due to graph constraints). The paper mentions
that joins must be inferred, but does not provide a complete procedure,
and the authors were unaware that their assumed procedure did not cover
all cases (Neumann, personal communication). Thus, we run this after
each join simplification we apply, to see whether we created such a
contradiction (if so, we know the opposite ordering is true).
The algorithm is bare-bones: We put each node (table) into its own
component, and then run through all join edges to see if we can connect
those components into larger components. If we can apply enough edges
(by repeated application of the entire list) that everything is connected
into the same component, then there is at least one valid join order,
and the graph is joinable. If not, it is impossible and we return true.
*/
bool GraphIsJoinable(const JoinHypergraph &graph,
const OnlineCycleFinder &cycles) {
NodeMap components[MAX_TABLES]; // Which tables belong to each component.
int in_component[MAX_TABLES]; // Which component each table belongs to.
NodeMap lateral_dependencies[MAX_TABLES];
// Start with each table in a separate component.
for (size_t node_idx = 0; node_idx < graph.nodes.size(); ++node_idx) {
components[node_idx] = TableBitmap(node_idx);
in_component[node_idx] = node_idx;
lateral_dependencies[node_idx] =
graph.nodes[node_idx].lateral_dependencies();
}
size_t num_in_component0 = 1;
auto func = [&num_in_component0, &graph](
int left_component, int right_component [[maybe_unused]],
const JoinPredicate &pred [[maybe_unused]], int num_changed) {
if (left_component == 0) {
num_in_component0 += num_changed;
return num_in_component0 == graph.nodes.size();
}
return false;
};
ConnectComponentsThroughJoins(graph, cycles, std::move(func), components,
in_component, lateral_dependencies);
return num_in_component0 == graph.nodes.size();
}
} // namespace
GraphSimplifier::GraphSimplifier(THD *thd, JoinHypergraph *graph)
: m_thd(thd),
m_done_steps(m_thd->mem_root),
m_undone_steps(m_thd->mem_root),
m_edge_cardinalities(Bounds_checked_array<EdgeCardinalities>::Alloc(
m_thd->mem_root, graph->edges.size())),
m_graph(graph),
m_cycles(FindJoinDependencies(graph->graph, m_thd->mem_root)),
m_cache(Bounds_checked_array<NeighborCache>::Alloc(m_thd->mem_root,
graph->edges.size())),
m_pq(CompareByBenefit(),
{Mem_root_allocator<NeighborCache *>{m_thd->mem_root}}) {
for (size_t edge_idx = 0; edge_idx < graph->edges.size(); ++edge_idx) {
m_edge_cardinalities[edge_idx].left = GetCardinality(
m_thd, graph->graph.edges[edge_idx * 2].left, *graph, m_cycles);
m_edge_cardinalities[edge_idx].right = GetCardinality(
m_thd, graph->graph.edges[edge_idx * 2].right, *graph, m_cycles);
m_cache[edge_idx].best_step.benefit = -HUGE_VAL;
}
for (size_t edge_idx = 0; edge_idx < graph->edges.size(); ++edge_idx) {
RecalculateNeighbors(edge_idx, edge_idx + 1, m_graph->edges.size());
}
}
void GraphSimplifier::UpdatePQ(size_t edge_idx) {
NeighborCache &cache = m_cache[edge_idx];
assert(!std::isnan(cache.best_step.benefit));
if (cache.index_in_pq == -1) {
if (cache.best_neighbor != -1) {
// Push into the queue for the first time.
m_pq.push(&cache);
}
} else {
if (cache.best_neighbor == -1) {
// No neighbors remaining, so take it out of the queue.
m_pq.remove(cache.index_in_pq);
cache.index_in_pq = -1;
} else {
m_pq.update(cache.index_in_pq);
}
}
assert(m_pq.is_valid());
}
void GraphSimplifier::RecalculateNeighbors(size_t edge1_idx, size_t begin,
size_t end) {
// Go through the neighbors of edge1_idx that are stored on other nodes
// (because they are numerically lower).
for (size_t edge2_idx = begin; edge2_idx < min(edge1_idx, end); ++edge2_idx) {
NeighborCache &other_cache = m_cache[edge2_idx];
ProposedSimplificationStep step;
if (EdgesAreNeighboring(edge2_idx, edge1_idx, &step)) {
if (other_cache.best_neighbor == -1 ||
step.benefit >= other_cache.best_step.benefit) {
// This is the new top for the other node. (This includes the case
// where it was already the top, but has increased.)
other_cache.best_neighbor = edge1_idx;
other_cache.best_step = step;
UpdatePQ(edge2_idx);
continue;
}
// Fall through.
}
if (other_cache.best_neighbor == static_cast<int>(edge1_idx)) {
// This pair was the best neighbor for the other side,
// and has either decreased in benefit or is no longer
// an (allowed) neighbor, so we need to re-check
// if some other node is the best one now.
//
// Since edge2_idx < edge1_idx, the recursion is guaranteed
// to terminate.
RecalculateNeighbors(edge2_idx, 0, m_graph->edges.size());
}
}
// Add the neighbors that are stored on this node. This is a much simpler
// case, since we can just throw away everything and start afresh.
NeighborCache &cache = m_cache[edge1_idx];
cache.best_neighbor = -1;
cache.best_step.benefit = -HUGE_VAL;
for (size_t edge2_idx = max(begin, edge1_idx + 1); edge2_idx < end;
++edge2_idx) {
ProposedSimplificationStep step;
if (EdgesAreNeighboring(edge1_idx, edge2_idx, &step)) {
// Stored on this node, so insert it.
if (cache.best_neighbor == -1 || step.benefit > cache.best_step.benefit) {
// This is the new top.
cache.best_neighbor = edge2_idx;
cache.best_step = step;
}
}
}
UpdatePQ(edge1_idx);
}
bool GraphSimplifier::EdgesAreNeighboring(
size_t edge1_idx, size_t edge2_idx,
GraphSimplifier::ProposedSimplificationStep *step) {
const Hyperedge e1 = m_graph->graph.edges[edge1_idx * 2];
const Hyperedge e2 = m_graph->graph.edges[edge2_idx * 2];
if (IsSubjoin(e1, e2) || IsSubjoin(e2, e1)) {
// One is a subjoin of each other, so ordering them is pointless.
return false;
}
const JoinPredicate &j1 = m_graph->edges[edge1_idx];
const JoinPredicate &j2 = m_graph->edges[edge2_idx];
// Get the cardinality of the left and right side of each edge. Make sure all
// the cardinalities are at least 0.1 rows just to avoid problems with
// division by zero when calculating the ratio between the cost estimates at
// the end of the function.
const double e1l = max(0.1, m_edge_cardinalities[edge1_idx].left);
const double e1r = max(0.1, m_edge_cardinalities[edge1_idx].right);
const double e2l = max(0.1, m_edge_cardinalities[edge2_idx].left);
const double e2r = max(0.1, m_edge_cardinalities[edge2_idx].right);
double cost_e1_before_e2;
double cost_e2_before_e1;
if (IsSubset(e1.left, e2.left) || IsSubset(e2.left, e1.left)) {
// e2 is neighboring e1's left side, ie., this case:
//
// e1
// L-------R
// |
// e2 |
// |
// R
//
// We want to find out whether applying e1 before e2 is likely
// to be beneficial or not. To that extent, we'd like to compute
//
// cost_e1_before_e2 = (e1l JOIN e1r) JOIN e2r
// cost_e2_before_e1 = (e2l JOIN e2r) JOIN e1r
//
// and then see which one is larger (and by how much it is larger).
// We then calculate cost1/cost2 and cost2/cost1 to see if any of these
// numbers are high (which indicates a favorable ordering to lock down
// early).
//
// However, there's a problem in that e1l and e2l are not necessarily
// identical; for instance, we could have a situation like this,
// with joins {r0,r1}-r2 and r1-r3:
//
// e1
// r0 ----- r1 --- r3
// \ /
// \ /
// \ /
// \ /
// |
// e2 |
// |
// r2
//
// Comparing these two costs would be unfair, as one includes
// r0 and the other one does not:
//
// cost_e1_before_e2 = (r1 JOIN r3) JOIN r2
// cost_e2_before_e1 = ({r0,r1} JOIN r2) JOIN r3
//
// So we follow the paper's lead and instead look at cost of
// joining against an imaginary table with the maximum
// cardinality of the two left sides, ie. we do
//
// cost_e1_before_e2 = (MAX(|e1l|,|e2l|) JOIN e1r) JOIN e2r
// cost_e2_before_e1 = (MAX(|e1l|,|e2l|) JOIN e2r) JOIN e1r
//
// We could have tested both against |r0 JOIN r1| (ie., the union
// of the two sets, which would have the same effect in this specific
// case), but it would be worse for cacheability, and we haven't made
// any detailed measurements of whether it actually is better (or worse)
// for overall quality of the simplifications.
double common = max(e1l, e2l);
cost_e1_before_e2 =
SimulateJoin(m_thd, SimulateJoin(m_thd, common, e1r, j1), e2r, j2).cost;
cost_e2_before_e1 =
SimulateJoin(m_thd, SimulateJoin(m_thd, common, e2r, j2), e1r, j1).cost;
} else if (IsSubset(e1.left, e2.right) || IsSubset(e2.right, e1.left)) {
// Analogous to the case above, but e1's left meets e2's right.
double common = max(e1l, e2r);
cost_e1_before_e2 =
SimulateJoin(m_thd, e2l, SimulateJoin(m_thd, common, e1r, j1), j2).cost;
cost_e2_before_e1 =
SimulateJoin(m_thd, SimulateJoin(m_thd, e2l, common, j2), e1r, j1).cost;
} else if (IsSubset(e1.right, e2.right) || IsSubset(e2.right, e1.right)) {
// Meets in their right endpoints.
double common = max(e1r, e2r);
cost_e1_before_e2 =
SimulateJoin(m_thd, e2l, SimulateJoin(m_thd, e1l, common, j1), j2).cost;
cost_e2_before_e1 =
SimulateJoin(m_thd, e1l, SimulateJoin(m_thd, e2l, common, j2), j1).cost;
} else if (IsSubset(e1.right, e2.left) || IsSubset(e2.left, e1.right)) {
// e1's right meets e2's left.
double common = max(e1r, e2l);
cost_e1_before_e2 =
SimulateJoin(m_thd, SimulateJoin(m_thd, e1l, common, j1), e2r, j2).cost;
cost_e2_before_e1 =
SimulateJoin(m_thd, e1l, SimulateJoin(m_thd, common, e2r, j2), j1).cost;
} else {
// Not neighboring.
return false;
}
// Assume the costs are finite and positive. Otherwise, the ratios calculated
// below might not make sense and return NaN.
assert(std::isfinite(cost_e1_before_e2));
assert(std::isfinite(cost_e2_before_e1));
assert(cost_e1_before_e2 > 0);
assert(cost_e2_before_e1 > 0);
if (cost_e1_before_e2 > cost_e2_before_e1) {
*step = {cost_e1_before_e2 / cost_e2_before_e1, static_cast<int>(edge2_idx),
static_cast<int>(edge1_idx)};
} else {
*step = {cost_e2_before_e1 / cost_e1_before_e2, static_cast<int>(edge1_idx),
static_cast<int>(edge2_idx)};
}
return true;
}
GraphSimplifier::SimplificationStep
GraphSimplifier::ConcretizeSimplificationStep(
GraphSimplifier::ProposedSimplificationStep step) {
const Hyperedge e1 = m_graph->graph.edges[step.before_edge_idx * 2];
const Hyperedge e2 = m_graph->graph.edges[step.after_edge_idx * 2];
// Find out whether they meet in e2's left or e2's right.
SimplificationStep full_step;
full_step.before_edge_idx = step.before_edge_idx;
full_step.after_edge_idx = step.after_edge_idx;
full_step.old_edge = e2;
full_step.new_edge = e2;
if (IsSubset(e1.left, e2.left) || IsSubset(e2.left, e1.left) ||
IsSubset(e1.right, e2.left) || IsSubset(e2.left, e1.right)) {
if (!Overlaps(e2.right, e1.left | e1.right)) {
m_edge_cardinalities[step.after_edge_idx].left = GetCardinalitySingleJoin(
m_thd, e1.left, e1.right,
m_edge_cardinalities[step.before_edge_idx].left,
m_edge_cardinalities[step.before_edge_idx].right, *m_graph,
m_graph->edges[step.before_edge_idx]);
full_step.new_edge.left |= e1.left | e1.right;
} else {
// We ended up in a situation where the two edges were not
// clearly separated, so recalculate the cardinality from scratch
// to be sure. This is slow, but happens fairly rarely.
NodeMap nodes_to_add = (e1.left | e1.right) & ~e2.right;
full_step.new_edge.left |= nodes_to_add;
m_edge_cardinalities[step.after_edge_idx].left =
GetCardinality(m_thd, full_step.new_edge.left, *m_graph, m_cycles);
}
} else {
assert(IsSubset(e1.left, e2.right) || IsSubset(e2.right, e1.left) ||
IsSubset(e1.right, e2.right) || IsSubset(e2.right, e1.right));
if (!Overlaps(e2.left, e1.left | e1.right)) {
m_edge_cardinalities[step.after_edge_idx].right =
GetCardinalitySingleJoin(
m_thd, e1.left, e1.right,
m_edge_cardinalities[step.before_edge_idx].left,
m_edge_cardinalities[step.before_edge_idx].right, *m_graph,
m_graph->edges[step.before_edge_idx]);
full_step.new_edge.right |= e1.left | e1.right;
} else {
// We ended up in a situation where the two edges were not
// clearly separated, so recalculate the cardinality from scratch
// to be sure. This is slow, but happens fairly rarely.
NodeMap nodes_to_add = (e1.left | e1.right) & ~e2.left;
full_step.new_edge.right |= nodes_to_add;
m_edge_cardinalities[step.after_edge_idx].right =
GetCardinality(m_thd, full_step.new_edge.right, *m_graph, m_cycles);
}
}
assert(!Overlaps(full_step.new_edge.left, full_step.new_edge.right));
assert(!Overlaps(full_step.new_edge.left, full_step.new_edge.right));
return full_step;
}
GraphSimplifier::SimplificationResult GraphSimplifier::DoSimplificationStep() {
// See if we have a cached (previously undone) step that we could apply.
if (!m_undone_steps.empty()) {
SimplificationStep step = m_undone_steps.back();
m_undone_steps.pop_back();
m_graph->graph.ModifyEdge(step.after_edge_idx * 2, step.new_edge.left,
step.new_edge.right);
m_done_steps.push_back(step);
return APPLIED_REDO_STEP;
}
if (m_pq.empty()) {
// No (further) simplifications were possible.
return NO_SIMPLIFICATION_POSSIBLE;
}
NeighborCache *cache = m_pq.top();
ProposedSimplificationStep best_step = cache->best_step;
bool forced = false;
if (m_cycles.EdgeWouldCreateCycle(best_step.before_edge_idx,
best_step.after_edge_idx)) {
// We cannot allow this ordering, so apply the opposite ordering
// to the graph. This has zero benefit in itself (it just makes
// explicit what is already true), but it means we will never
// try to do this step anymore.
swap(best_step.before_edge_idx, best_step.after_edge_idx);
forced = true;
}
// Make so that e1 is ordered before e2 (i.e., e2 requires e1).
EdgeCardinalities old_cardinalities =
m_edge_cardinalities[best_step.after_edge_idx];
SimplificationStep full_step = ConcretizeSimplificationStep(best_step);
bool added_cycle [[maybe_unused]] =
m_cycles.AddEdge(best_step.before_edge_idx, best_step.after_edge_idx);
assert(!added_cycle);
m_graph->graph.ModifyEdge(best_step.after_edge_idx * 2,
full_step.new_edge.left, full_step.new_edge.right);
if (!GraphIsJoinable(*m_graph, m_cycles)) {
// The change we did introduced an impossibility; we made the graph
// unjoinable. This happens very rarely, but it does, since our
// happens-before join detection is incomplete (see GraphIsJoinable()
// and FindJoinDependencies() comments for more details). When this
// happens, we need to first undo what we just did:
m_cycles.DeleteEdge(best_step.before_edge_idx, best_step.after_edge_idx);
m_graph->graph.ModifyEdge(best_step.after_edge_idx * 2,
full_step.old_edge.left,
full_step.old_edge.right);
m_edge_cardinalities[best_step.after_edge_idx] = old_cardinalities;
// Then, we insert the opposite constraint of what we just tried
// (because we just inferred that it's implicitly in our current graph)
// and then try again to find a simplification.
// (We don't modify the graph, but the next iteration will.)
if (m_cycles.AddEdge(full_step.after_edge_idx, full_step.before_edge_idx)) {
// Adding the opposite constraint would cause a cycle. This means
// GraphIsJoinable() says join A cannot be before join B, whereas
// AddEdge() says join B cannot be before join A. One of them must be
// wrong. It is likely AddEdge() that gives the wrong answer due to a
// cycle in the hypergraph. Since we cannot add the opposite constraint in
// order to prevent that this simplification is applied, we instead remove
// it from the set of potential simplification before we try again.
m_pq.pop();
cache->index_in_pq = -1;
}
return DoSimplificationStep();
}
RecalculateNeighbors(best_step.after_edge_idx, 0, m_graph->edges.size());
m_done_steps.push_back(full_step);
return forced ? APPLIED_NOOP : APPLIED_SIMPLIFICATION;
}
void GraphSimplifier::UndoSimplificationStep() {
assert(!m_done_steps.empty());
SimplificationStep step = m_done_steps.back();
m_done_steps.pop_back();
m_graph->graph.ModifyEdge(step.after_edge_idx * 2, step.old_edge.left,
step.old_edge.right);
m_undone_steps.push_back(step);
// NOTE: As mentioned in the class comments, we don't touch m_cycles
// or any of the cardinalities here.
}
void SetNumberOfSimplifications(int num_simplifications,
GraphSimplifier *simplifier) {
assert(simplifier->num_steps_done() + simplifier->num_steps_undone() >=
num_simplifications);
while (simplifier->num_steps_done() < num_simplifications) {
GraphSimplifier::SimplificationResult error [[maybe_unused]] =
simplifier->DoSimplificationStep();
assert(error != GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE);
}
while (simplifier->num_steps_done() > num_simplifications) {
simplifier->UndoSimplificationStep();
}
}
/**
Repeatedly apply simplifications (in the order of most to least safe) to the
given hypergraph, until it is below “subgraph_pair_limit” subgraph pairs
or we can simplify it no more. Since we cannot know ahead of time exactly
how many simplification steps required, we need to do this iteratively,
running DPhyp (with all the actual and expensive costing removed, only
subgraph pair counting) as we go.
On the assumption that running DPhyp over the graph is significantly more
expensive than applying a simplification step, we do this by means of binary
search (what the paper calls “the full algorithm”). We apply first 1, 2, 4,
8, 16, etc. steps until we find a number that takes us below the limit.
Then, we apply a simple binary search between that value and the previous one.
Once we find the border between too complicated and just simple enough,
we set the graph to the latter, and the actual query planning will start
afresh.
*/
void SimplifyQueryGraph(THD *thd, int subgraph_pair_limit,
JoinHypergraph *graph, GraphSimplifier *simplifier) {
if (TraceStarted(thd)) {
Trace(thd) << "\nQuery became too complicated, doing heuristic graph "
"simplification.\n";
}
MEM_ROOT counting_mem_root;
int lower_bound = 0, upper_bound = 1;
int num_subgraph_pairs_upper = -1;
for (;;) { // Termination condition within loop.
bool hit_upper_limit = false;
while (simplifier->num_steps_done() < upper_bound) {
if (simplifier->DoSimplificationStep() ==
GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE) {
if (!IsQueryGraphSimpleEnough(thd, *graph, subgraph_pair_limit,
&counting_mem_root,
&num_subgraph_pairs_upper)) {
// If this happens, the user has set the limit way too low. The query
// will run with all the simplifications we have found, but the number
// of subgraph pairs is still above the limit.
if (TraceStarted(thd)) {
Trace(thd)
<< "Cannot do any more simplification steps, just running "
"the query as-is.\n";
}
return;
}
upper_bound = simplifier->num_steps_done();
hit_upper_limit = true;
break;
}
}
if (hit_upper_limit) {