forked from mysql/mysql-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunique_ptr.h
808 lines (702 loc) · 26 KB
/
unique_ptr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/* Copyright (c) 2020, 2024, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef MEMORY_UNIQUE_PTR_INCLUDED
#define MEMORY_UNIQUE_PTR_INCLUDED
#include <assert.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include "my_sys.h"
#include "mysql/service_mysql_alloc.h" // my_malloc
#include "sql/memory/aligned_atomic.h" // memory::cache_line_size
#include "sql/memory/ref_ptr.h" // memory::Ref_ptr
namespace memory {
namespace traits {
/**
Tests for the existence of `allocate(size_t)` in order to disambiguate if `T`
is an allocator class.
*/
template <class T>
auto test_for_allocate(int T::*)
-> decltype(std::declval<T>().allocate(std::declval<size_t>()),
std::true_type{});
template <class>
std::false_type test_for_allocate(...);
} // namespace traits
/**
Struct that allows for checking if `T` fulfills the Allocator named
requirements.
*/
template <class T>
struct is_allocator : decltype(traits::test_for_allocate<T>(nullptr)) {};
/**
Allocator class for instrumenting allocated memory with Performance Schema
keys.
*/
template <typename T>
class PFS_allocator {
using value_type = T;
using size_type = size_t;
/**
Constructor for the class that takes the PFS key to be used.
@param key The PFS key to be used.
*/
PFS_allocator(PSI_memory_key key);
/**
Copy constructor.
@param rhs The object to copy from.
*/
template <typename U>
PFS_allocator(PFS_allocator<U> const &rhs) noexcept;
/**
Move constructor.
@param rhs The object to move from.
*/
template <typename U>
PFS_allocator(PFS_allocator<U> &&rhs) noexcept;
/**
Retrieves the PFS for `this` allocator object.
@return The PFS key.
*/
PSI_memory_key key() const;
/**
Allocate `n` bytes and return a pointer to the beginning of the allocated
memory.
@param n The size of the memory to allocate.
@return A pointer to the beginning of the allocated memory.
*/
T *allocate(std::size_t n);
/**
Deallocates the `n` bytes stored in the memory pointer `p` is pointing to.
@param p The pointer to the beginning of the memory to deallocate.
@param n The size of the memory to deallocate.
*/
void deallocate(T *p, std::size_t n) noexcept;
/**
In-place constructs an object of class `U` in the memory pointed by `p`.
@param p The pointer to the beginning of the memory to construct the object
in.
@param args The parameters to be used with the `U` constructor.
*/
template <class U, class... Args>
void construct(U *p, Args &&...args);
/**
In-place invokes the destructor for class `T` on object pointed by `p`.
@param p The object pointer to invoke the destructor on.
*/
void destroy(T *p);
/**
The maximum size available to allocate.
@return The maximum size available to allocate.
*/
size_type max_size() const;
private:
/** The PFS key to be used to allocate memory */
PSI_memory_key m_key;
};
/**
Smart pointer to hold a unique pointer to a heap allocated memory of type `T`,
constructed using a specific allocator.
Template parameters are as follows:
- `T` is the type of the pointer to allocate. It may be an array type.
- `A` the allocator to use. If none is passed, `std::nullptr_t` is passed and
regular `new` and `delete` are used to construct the memory.
*/
template <typename T, typename A = std::nullptr_t>
class Unique_ptr {
public:
using type = typename std::remove_extent<T>::type;
using pointer = type *;
using reference = type &;
/**
Default class constructor, only to be used with no specific allocator.
*/
template <
typename D = T, typename B = A,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value> * = nullptr>
Unique_ptr();
/**
Class constructor, to be used with specific allocators, passing the
allocator object to be used.
@param alloc The allocator instance to be used.
*/
template <
typename D = T, typename B = A,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value> * = nullptr>
Unique_ptr(A &alloc);
/**
Class constructor, to be used with specific allocators and when `T` is an
array type, passing the allocator object to be used and the size of the
array.
@param alloc The allocator instance to be used.
@param size The size of the array to allocate.
*/
template <typename D = T, typename B = A,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value &&
std::is_array<D>::value> * = nullptr>
Unique_ptr(A &alloc, size_t size);
/**
Class constructor, to be used with no specific allocators and when `T` is an
array type, passing the allocator object to be used and the size of the
array.
@param size The size of the array to allocate.
*/
template <typename D = T, typename B = A,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value &&
std::is_array<D>::value> * = nullptr>
Unique_ptr(size_t size);
/**
Class constructor, to be used with specific allocators and when `T` is not
an array type, passing the allocator object to be used and the parameters to
be used with `T` object constructor.
@param alloc The allocator instance to be used.
@param args The parameters to be used with `T` object constructor.
*/
template <typename... Args, typename D = T, typename B = A,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value &&
!std::is_array<D>::value> * = nullptr>
Unique_ptr(A &alloc, Args &&...args);
/**
Class constructor, to be used with no specific allocators and when `T` is
not an array type, passing the parameters to be used with `T` object
constructor.
@param args The parameters to be used with `T` object constructor.
*/
template <typename... Args, typename D = T, typename B = A,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value &&
!std::is_array<D>::value> * = nullptr>
Unique_ptr(Args &&...args);
// Deleted copy constructor
Unique_ptr(Unique_ptr<T, A> const &rhs) = delete;
/**
Move constructor.
@param rhs The object to move data from.
*/
Unique_ptr(Unique_ptr<T, A> &&rhs);
/**
Destructor for the class.
*/
virtual ~Unique_ptr();
// Deleted copy operator
Unique_ptr<T, A> &operator=(Unique_ptr<T, A> const &rhs) = delete;
/**
Move operator.
@param rhs The object to move data from.
*/
Unique_ptr<T, A> &operator=(Unique_ptr<T, A> &&rhs);
/**
Arrow operator to access the underlying object of type `T`.
@return A pointer to the underlying object of type `T`.
*/
template <typename D = T,
std::enable_if_t<!std::is_array<D>::value> * = nullptr>
pointer operator->() const;
/**
Star operator to access the underlying object of type `T`.
@return A reference to the underlying object of type `T`.
*/
reference operator*() const;
/**
Subscript operator, to access an array element when `T` is of array type.
@param index The index of the element to retrieve the value for.
@return A reference to the value stored at index.
*/
template <typename D = T,
std::enable_if_t<std::is_array<D>::value> * = nullptr>
reference operator[](size_t index) const;
/**
Casting operator to bool.
@return `true` if the underlying pointer is instantiated, `false` otherwise.
*/
operator bool() const;
/**
Releases the ownership of the underlying allocated memory and returns a
pointer to the beginning of that memory. This smart pointer will no longer
manage the underlying memory.
@return the pointer to the allocated and no longer managed memory.
*/
template <
typename B = A,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value> * = nullptr>
pointer release();
/**
Releases the ownership of the underlying allocated memory and returns a
pointer to the beginning of that memory. This smart pointer will no longer
manage the underlying memory.
@return the pointer to the allocated and no longer managed memory.
*/
template <
typename B = A,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value> * = nullptr>
pointer release();
/**
Returns a pointer to the underlying allocated memory.
@return A pointer to the underlying allocated memory
*/
pointer get() const;
/**
The size of the memory allocated, in bytes.
@return The size of the memory allocated, in bytes
*/
size_t size() const;
/**
Will resize the allocated memory to `new_size`. If the configure allocator
supports this operation, the allocator is used. If not, a new memory chunk
is allocated and the memory is copied.
@param new_size The new desired size for the memory.
@return The reference to `this` object, for chaining purposed.
*/
template <
typename D = T, typename B = A,
std::enable_if_t<std::is_array<D>::value &&
std::is_same<B, std::nullptr_t>::value> * = nullptr>
Unique_ptr<T, A> &reserve(size_t new_size);
/**
Will resize the allocated memory to `new_size`. If the configure allocator
supports this operation, the allocator is used. If not, a new memory chunk
is allocated and the memory is copied.
@param new_size The new desired size for the memory.
@return The reference to `this` object, for chaining purposed.
*/
template <
typename D = T, typename B = A,
std::enable_if_t<std::is_array<D>::value &&
!std::is_same<B, std::nullptr_t>::value> * = nullptr>
Unique_ptr<T, A> &reserve(size_t new_size);
/**
Returns the used allocator instance, if any.
@return The reference to the allocator object.
*/
A &allocator() const;
private:
/** The pointer to the underlying allocated memory */
alignas(std::max_align_t) pointer m_underlying{nullptr};
/** The allocator to be used to allocate memory */
memory::Ref_ptr<A> m_allocator;
/** The size of the allocated memory */
size_t m_size{0};
/**
Clears the underlying pointer and size.
*/
void reset();
/**
Deallocates the underlying allocated memory.
*/
template <typename D = T, typename B = A,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value &&
std::is_array<D>::value> * = nullptr>
void destroy();
/**
Deallocates the underlying allocated memory.
*/
template <typename D = T, typename B = A,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value &&
!std::is_array<D>::value> * = nullptr>
void destroy();
/**
Deallocates the underlying allocated memory.
*/
template <typename D = T, typename B = A,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value &&
std::is_array<D>::value> * = nullptr>
void destroy();
/**
Deallocates the underlying allocated memory.
*/
template <typename D = T, typename B = A,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value &&
!std::is_array<D>::value> * = nullptr>
void destroy();
/**
Clones the underlying memory and returns a pointer to the clone memory.
@return A pointer to the cloned underlying memory.
*/
template <typename D = T,
std::enable_if_t<std::is_array<D>::value> * = nullptr>
pointer clone() const;
/**
Clones the underlying memory and returns a pointer to the clone memory.
@return A pointer to the cloned underlying memory.
*/
template <typename D = T,
std::enable_if_t<!std::is_array<D>::value> * = nullptr>
pointer clone() const;
};
/**
In-place constructs a new unique pointer with no specific allocator and with
array type `T`.
@param size The size of the array to allocate.
@return A new instance of unique pointer.
*/
template <typename T, std::enable_if_t<std::is_array<T>::value> * = nullptr>
Unique_ptr<T, std::nullptr_t> make_unique(size_t size);
/**
In-place constructs a new unique pointer with a specific allocator and with
array type `T`.
@param alloc A reference to the allocator object to use.
@param size The size of the array to allocate.
@return A new instance of unique pointer.
*/
template <typename T, typename A,
std::enable_if_t<std::is_array<T>::value> * = nullptr>
Unique_ptr<T, A> make_unique(A &alloc, size_t size);
/**
In-place constructs a new unique pointer with a specific allocator and with
non-array type `T`.
@param alloc A reference to the allocator object to use.
@param args The parameters to be used in constructing the instance of `T`.
@return A new instance of unique pointer.
*/
template <typename T, typename A, typename... Args,
std::enable_if_t<!std::is_array<T>::value &&
memory::is_allocator<A>::value> * = nullptr>
Unique_ptr<T, A> make_unique(A &alloc, Args &&...args);
/**
In-place constructs a new unique pointer with no specific allocator and with
non-array type `T`.
@param args The parameters to be used in constructing the instance of `T`.
@return A new instance of unique pointer.
*/
template <typename T, typename... Args,
std::enable_if_t<!std::is_array<T>::value> * = nullptr>
Unique_ptr<T, std::nullptr_t> make_unique(Args &&...args);
} // namespace memory
// global scope
template <typename T, typename U>
bool operator==(const memory::PFS_allocator<T> &lhs,
const memory::PFS_allocator<U> &rhs) {
return lhs.key() == rhs.key();
}
template <typename T, typename U>
bool operator!=(const memory::PFS_allocator<T> &lhs,
const memory::PFS_allocator<U> &rhs) {
return lhs.key() != rhs.key();
}
template <typename T1, typename A1, typename T2, typename A2>
bool operator==(memory::Unique_ptr<T1, A1> const &lhs,
memory::Unique_ptr<T2, A2> const &rhs) {
return static_cast<const void *>(lhs.get()) ==
static_cast<const void *>(rhs.get());
}
template <typename T1, typename A1, typename T2, typename A2>
bool operator!=(memory::Unique_ptr<T1, A1> const &lhs,
memory::Unique_ptr<T2, A2> const &rhs) {
return !(lhs == rhs);
}
template <typename T1, typename A1>
bool operator==(memory::Unique_ptr<T1, A1> const &lhs, std::nullptr_t) {
return lhs.get() == nullptr;
}
template <typename T1, typename A1>
bool operator!=(memory::Unique_ptr<T1, A1> const &lhs, std::nullptr_t) {
return !(lhs == nullptr);
}
// global scope
template <typename T>
memory::PFS_allocator<T>::PFS_allocator(PSI_memory_key key) : m_key{key} {}
template <typename T>
template <typename U>
memory::PFS_allocator<T>::PFS_allocator(PFS_allocator<U> const &rhs) noexcept
: m_key{rhs.m_key} {}
template <typename T>
template <typename U>
memory::PFS_allocator<T>::PFS_allocator(PFS_allocator<U> &&rhs) noexcept
: m_key{rhs.m_key} {
rhs.m_key = 0;
}
template <typename T>
PSI_memory_key memory::PFS_allocator<T>::key() const {
return this->m_key;
}
template <typename T>
T *memory::PFS_allocator<T>::allocate(std::size_t n) {
if (n <= std::numeric_limits<std::size_t>::max() / sizeof(T)) {
if (auto p = static_cast<T *>(my_malloc(this->m_key, (n * sizeof(T)),
MYF(MY_WME | ME_FATALERROR))))
return p;
}
throw std::bad_alloc();
}
template <typename T>
void memory::PFS_allocator<T>::deallocate(T *p, std::size_t) noexcept {
my_free(p);
}
template <typename T>
template <class U, class... Args>
void memory::PFS_allocator<T>::construct(U *p, Args &&...args) {
assert(p != nullptr);
try {
::new ((void *)p) U(std::forward<Args>(args)...);
} catch (...) {
assert(false); // Constructor should not throw an exception.
}
}
template <typename T>
void memory::PFS_allocator<T>::destroy(T *p) {
assert(p != nullptr);
try {
p->~T();
} catch (...) {
assert(false); // Destructor should not throw an exception
}
}
template <typename T>
size_t memory::PFS_allocator<T>::max_size() const {
return std::numeric_limits<size_t>::max() / sizeof(T);
}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value> *>
memory::Unique_ptr<T, A>::Unique_ptr() : m_underlying{nullptr}, m_size{0} {}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value> *>
memory::Unique_ptr<T, A>::Unique_ptr(A &alloc)
: m_underlying{nullptr}, m_allocator{alloc}, m_size{0} {}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value &&
std::is_array<D>::value> *>
memory::Unique_ptr<T, A>::Unique_ptr(A &alloc, size_t size)
: m_underlying{nullptr}, m_allocator{alloc}, m_size{size} {
this->m_underlying = this->m_allocator->allocate(this->m_size);
}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value &&
std::is_array<D>::value> *>
memory::Unique_ptr<T, A>::Unique_ptr(size_t size)
: m_underlying{new type[size]}, m_size{size} {}
template <typename T, typename A>
template <typename... Args, typename D, typename B,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value &&
!std::is_array<D>::value> *>
memory::Unique_ptr<T, A>::Unique_ptr(A &alloc, Args &&...args)
: m_underlying{nullptr}, m_allocator{alloc}, m_size{sizeof(T)} {
this->m_underlying = this->m_allocator->allocate(this->m_size);
this->m_allocator->construct(this->m_underlying, std::forward<Args>(args)...);
}
template <typename T, typename A>
template <typename... Args, typename D, typename B,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value &&
!std::is_array<D>::value> *>
memory::Unique_ptr<T, A>::Unique_ptr(Args &&...args)
: m_underlying{new T{std::forward<Args>(args)...}}, m_size{sizeof(T)} {}
template <typename T, typename A>
memory::Unique_ptr<T, A>::Unique_ptr(memory::Unique_ptr<T, A> &&rhs)
: m_underlying{rhs.m_underlying},
m_allocator{rhs.m_allocator},
m_size{rhs.m_size} {
rhs.reset();
}
template <typename T, typename A>
memory::Unique_ptr<T, A>::~Unique_ptr() {
this->destroy();
}
template <typename T, typename A>
typename memory::Unique_ptr<T, A> &memory::Unique_ptr<T, A>::operator=(
memory::Unique_ptr<T, A> &&rhs) {
this->m_underlying = rhs.m_underlying;
this->m_allocator = rhs.m_allocator;
this->m_size = rhs.m_size;
rhs.reset();
return (*this);
}
template <typename T, typename A>
template <typename D, std::enable_if_t<!std::is_array<D>::value> *>
typename memory::Unique_ptr<T, A>::pointer
memory::Unique_ptr<T, A>::operator->() const {
return this->m_underlying;
}
template <typename T, typename A>
typename memory::Unique_ptr<T, A>::reference
memory::Unique_ptr<T, A>::operator*() const {
return (*this->m_underlying);
}
template <typename T, typename A>
template <typename D, std::enable_if_t<std::is_array<D>::value> *>
typename memory::Unique_ptr<T, A>::reference
memory::Unique_ptr<T, A>::operator[](size_t index) const {
return this->m_underlying[index];
}
template <typename T, typename A>
memory::Unique_ptr<T, A>::operator bool() const {
return this->m_underlying != nullptr;
}
template <typename T, typename A>
template <typename B,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value> *>
typename memory::Unique_ptr<T, A>::pointer memory::Unique_ptr<T, A>::release() {
pointer to_return = this->m_underlying;
this->reset();
return to_return;
}
template <typename T, typename A>
template <typename B,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value> *>
typename memory::Unique_ptr<T, A>::pointer memory::Unique_ptr<T, A>::release() {
pointer to_return = this->m_allocator->release(this->m_underlying);
if (to_return != this->m_underlying) {
to_return = this->clone();
this->destroy();
} else {
this->reset();
}
return to_return;
}
template <typename T, typename A>
typename memory::Unique_ptr<T, A>::pointer memory::Unique_ptr<T, A>::get()
const {
return this->m_underlying;
}
template <typename T, typename A>
size_t memory::Unique_ptr<T, A>::size() const {
return this->m_size;
}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<std::is_array<D>::value &&
std::is_same<B, std::nullptr_t>::value> *>
typename memory::Unique_ptr<T, A> &memory::Unique_ptr<T, A>::reserve(
size_t new_size) {
pointer old_ptr = this->m_underlying;
this->m_underlying = new type[new_size];
if (this->m_size != 0) {
std::copy(old_ptr, old_ptr + std::min(this->m_size, new_size),
this->m_underlying);
}
this->m_size = new_size;
delete[] old_ptr;
return (*this);
}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<std::is_array<D>::value &&
!std::is_same<B, std::nullptr_t>::value> *>
typename memory::Unique_ptr<T, A> &memory::Unique_ptr<T, A>::reserve(
size_t new_size) {
if (this->m_allocator->can_resize()) {
this->m_underlying =
this->m_allocator->resize(this->m_underlying, this->m_size, new_size);
} else {
pointer old_ptr = this->m_underlying;
this->m_underlying = this->m_allocator->allocate(new_size);
if (this->m_size != 0) {
std::copy(old_ptr, old_ptr + std::min(this->m_size, new_size),
this->m_underlying);
this->m_allocator->deallocate(old_ptr, this->m_size);
}
}
this->m_size = new_size;
return (*this);
}
template <typename T, typename A>
A &memory::Unique_ptr<T, A>::allocator() const {
return *this->m_allocator;
}
template <typename T, typename A>
void memory::Unique_ptr<T, A>::reset() {
this->m_underlying = nullptr;
this->m_size = 0;
}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value &&
std::is_array<D>::value> *>
void memory::Unique_ptr<T, A>::destroy() {
if (this->m_underlying != nullptr) {
delete[] this->m_underlying;
this->reset();
}
}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value &&
!std::is_array<D>::value> *>
void memory::Unique_ptr<T, A>::destroy() {
if (this->m_underlying != nullptr) {
delete this->m_underlying;
this->reset();
}
}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value &&
std::is_array<D>::value> *>
void memory::Unique_ptr<T, A>::destroy() {
if (this->m_underlying != nullptr) {
this->m_allocator->deallocate(this->m_underlying, this->m_size);
this->reset();
}
}
template <typename T, typename A>
template <typename D, typename B,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value &&
!std::is_array<D>::value> *>
void memory::Unique_ptr<T, A>::destroy() {
if (this->m_underlying != nullptr) {
this->m_allocator->destroy(this->m_underlying);
this->m_allocator->deallocate(this->m_underlying, this->m_size);
this->reset();
}
}
template <typename T, typename A>
template <typename D, std::enable_if_t<std::is_array<D>::value> *>
typename memory::Unique_ptr<T, A>::pointer memory::Unique_ptr<T, A>::clone()
const {
pointer to_return = new type[this->m_size];
std::copy(this->m_underlying, this->m_underlying + this->m_size, to_return);
return to_return;
}
template <typename T, typename A>
template <typename D, std::enable_if_t<!std::is_array<D>::value> *>
typename memory::Unique_ptr<T, A>::pointer memory::Unique_ptr<T, A>::clone()
const {
pointer to_return = new type(*this->m_underlying);
return to_return;
}
#ifndef IN_DOXYGEN // Doxygen doesn't understand this construction.
template <typename T, std::enable_if_t<std::is_array<T>::value> *>
memory::Unique_ptr<T, std::nullptr_t> memory::make_unique(size_t size) {
return memory::Unique_ptr<T, std::nullptr_t>{size};
}
template <typename T, typename A, std::enable_if_t<std::is_array<T>::value> *>
memory::Unique_ptr<T, A> memory::make_unique(A &alloc, size_t size) {
return std::move(memory::Unique_ptr<T, A>{alloc, size});
}
template <typename T, typename A, typename... Args,
std::enable_if_t<!std::is_array<T>::value &&
memory::is_allocator<A>::value> *>
memory::Unique_ptr<T, A> memory::make_unique(A &alloc, Args &&...args) {
return std::move(
memory::Unique_ptr<T, A>{alloc, std::forward<Args>(args)...});
}
template <typename T, typename... Args,
std::enable_if_t<!std::is_array<T>::value> *>
memory::Unique_ptr<T, std::nullptr_t> memory::make_unique(Args &&...args) {
return memory::Unique_ptr<T, std::nullptr_t>{std::forward<Args>(args)...};
}
#endif
#endif // MEMORY_UNIQUE_PTR_INCLUDED