forked from mysql/mysql-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrowid_ordered_retrieval_plan.cc
983 lines (859 loc) · 37.6 KB
/
rowid_ordered_retrieval_plan.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
/* Copyright (c) 2000, 2024, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/range_optimizer/rowid_ordered_retrieval_plan.h"
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <utility>
#include "m_string.h"
#include "my_alloc.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "mysql/strings/m_ctype.h"
#include "sql/key.h"
#include "sql/key_spec.h"
#include "sql/mem_root_array.h"
#include "sql/opt_costmodel.h"
#include "sql/opt_hints.h"
#include "sql/opt_trace.h"
#include "sql/range_optimizer/index_range_scan.h"
#include "sql/range_optimizer/index_range_scan_plan.h"
#include "sql/range_optimizer/internal.h"
#include "sql/range_optimizer/path_helpers.h"
#include "sql/range_optimizer/range_opt_param.h"
#include "sql/range_optimizer/rowid_ordered_retrieval.h"
#include "sql/range_optimizer/tree.h"
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_lex.h"
#include "sql/sql_optimizer.h"
#include "sql/table.h"
#include "sql_string.h"
class Opt_trace_context;
using std::max;
using std::min;
#ifndef NDEBUG
static void print_ror_scans(TABLE *table, const char *msg,
const Mem_root_array<ROR_SCAN_INFO *> &ror_scans) {
DBUG_TRACE;
StringBuffer<1024> tmp;
for (ROR_SCAN_INFO *scan : ror_scans) {
if (!tmp.is_empty()) tmp.append(',');
tmp.append(table->key_info[scan->keynr].name);
}
if (tmp.is_empty()) tmp.append(STRING_WITH_LEN("(empty)"));
DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
fprintf(DBUG_FILE, "ROR key scans (%s): %s", msg, tmp.ptr());
}
#endif
/*
Get the needed fields used in the query.
NOTES
Clustered PK members are not put into the bitmap as they are implicitly
present in all keys (and it is impossible to avoid reading them).
*/
OverflowBitset get_needed_fields(const RANGE_OPT_PARAM *param) {
TABLE *table = param->table;
MutableOverflowBitset fields(param->temp_mem_root, table->s->fields);
for (size_t i = bitmap_get_first_set(table->read_set); i != MY_BIT_NONE;
i = bitmap_get_next_set(table->read_set, i)) {
fields.SetBit(i);
}
for (size_t i = bitmap_get_first_set(table->write_set); i != MY_BIT_NONE;
i = bitmap_get_next_set(table->write_set, i)) {
fields.SetBit(i);
}
uint pk = table->s->primary_key;
if (pk != MAX_KEY && table->file->primary_key_is_clustered()) {
/* The table uses clustered PK and it is not internally generated */
KEY_PART_INFO *key_part = table->key_info[pk].key_part;
KEY_PART_INFO *key_part_end =
key_part + table->key_info[pk].user_defined_key_parts;
for (; key_part != key_part_end; ++key_part)
fields.ClearBit(key_part->fieldnr - 1);
}
return fields;
}
void trace_basic_info_rowid_intersection(THD *thd, const AccessPath *path,
const RANGE_OPT_PARAM *param,
Opt_trace_object *trace_object) {
trace_object->add_alnum("type", "index_roworder_intersect")
.add("rows", path->num_output_rows())
.add("cost", path->cost())
.add("covering", path->rowid_intersection().is_covering)
.add("clustered_pk_scan",
path->rowid_intersection().cpk_child != nullptr);
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_array ota(trace, "intersect_of");
for (AccessPath *child : *path->rowid_intersection().children) {
Opt_trace_object trace_isect_idx(trace);
trace_basic_info(thd, child, param, &trace_isect_idx);
}
}
void trace_basic_info_rowid_union(THD *thd, const AccessPath *path,
const RANGE_OPT_PARAM *param,
Opt_trace_object *trace_object) {
Opt_trace_context *const trace = &thd->opt_trace;
trace_object->add_alnum("type", "index_roworder_union");
Opt_trace_array ota(trace, "union_of");
for (AccessPath *child : *path->rowid_union().children) {
Opt_trace_object path_info(trace);
::trace_basic_info(thd, child, param, &path_info);
}
}
/*
Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
sel_arg set of intervals.
SYNOPSIS
make_ror_scan()
param Parameter from test_quick_select function
idx Index of key in param->keys
sel_root Set of intervals for a given key
needed_fields Bitmask of fields needed by the query
RETURN
NULL - out of memory
ROR scan structure containing a scan for {idx, sel_arg}
*/
ROR_SCAN_INFO *make_ror_scan(const RANGE_OPT_PARAM *param, int idx,
SEL_ROOT *sel_root, OverflowBitset needed_fields) {
ROR_SCAN_INFO *ror_scan;
uint keynr;
DBUG_TRACE;
if (!(ror_scan = new (param->return_mem_root) ROR_SCAN_INFO)) return nullptr;
ror_scan->idx = idx;
ror_scan->keynr = keynr = param->real_keynr[idx];
ror_scan->sel_root = sel_root;
ror_scan->records = param->table->quick_rows[keynr];
KEY_PART_INFO *key_part = param->table->key_info[keynr].key_part;
KEY_PART_INFO *key_part_end =
key_part + param->table->key_info[keynr].user_defined_key_parts;
MutableOverflowBitset covered_fields(param->temp_mem_root,
needed_fields.capacity());
for (; key_part != key_part_end; ++key_part) {
if (IsBitSet(key_part->fieldnr - 1, needed_fields))
covered_fields.SetBit(key_part->fieldnr - 1);
}
ror_scan->covered_fields = std::move(covered_fields);
double rows = rows2double(param->table->quick_rows[ror_scan->keynr]);
ror_scan->index_read_cost =
param->table->file->index_scan_cost(ror_scan->keynr, 1, rows);
Quick_ranges ranges(param->return_mem_root);
unsigned num_exact_key_parts_unused;
if (get_ranges_from_tree(param->return_mem_root, param->table,
param->key[idx], param->real_keynr[idx], sel_root,
MAX_REF_PARTS, &ror_scan->used_key_parts,
&num_exact_key_parts_unused, &ranges)) {
return nullptr;
}
ror_scan->ranges = {&ranges[0], ranges.size()};
return ror_scan;
}
/**
Sort indexes in an order that is likely to be a good index merge
intersection order. After running this function ror_scans are
ordered according to this strategy:
1) Minimize the number of indexes that must be used in the
intersection. I.e., the index covering most fields not already
covered by other indexes earlier in the sort order is picked first.
2) When multiple indexes cover equally many uncovered fields, the
index with lowest E(Number of rows) is chosen.
Note that all permutations of index ordering are not tested, so this
function may not find the optimal order.
@param[in,out] ror_scans ror scans to be used in index merge intersection
@param needed_fields Bitmask of fields needed by the query.
@param mem_root memory root to be used.
*/
void find_intersect_order(Mem_root_array<ROR_SCAN_INFO *> *ror_scans,
OverflowBitset needed_fields, MEM_ROOT *mem_root) {
for (uint index = 0; index < ror_scans->size(); index++) {
std::stable_sort(
ror_scans->begin() + index, ror_scans->end(),
[needed_fields](ROR_SCAN_INFO *a, ROR_SCAN_INFO *b) {
/*
Compare two ROR_SCAN_INFO* by
1. Number of fields in this index that are not already
covered by other indexes earlier in the intersect
ordering: descending
2. E(Number of records): ascending
*/
auto fields_in_a = BitsSetInBoth(a->covered_fields, needed_fields);
uint num_fields_a =
std::distance(fields_in_a.begin(), fields_in_a.end());
auto fields_in_b = BitsSetInBoth(b->covered_fields, needed_fields);
uint num_fields_b =
std::distance(fields_in_b.begin(), fields_in_b.end());
if (num_fields_a < num_fields_b) return false;
if (num_fields_a > num_fields_b) return true;
return a->records < b->records;
});
MutableOverflowBitset fields_to_be_covered = needed_fields.Clone(mem_root);
for (uint i : BitsSetIn((*ror_scans)[index]->covered_fields))
fields_to_be_covered.ClearBit(i);
needed_fields = std::move(fields_to_be_covered);
if (needed_fields.empty()) break;
}
}
ROR_intersect_plan::ROR_intersect_plan(const RANGE_OPT_PARAM *param,
size_t num_fields)
: m_param(param),
m_ror_scans(param->return_mem_root, 0),
m_out_rows(m_param->table->file->stats.records),
m_covered_fields(
MutableOverflowBitset(param->temp_mem_root, num_fields)) {}
ROR_intersect_plan &ROR_intersect_plan::operator=(
const ROR_intersect_plan &plan) {
m_param = plan.m_param;
m_ror_scans.clear();
for (ROR_SCAN_INFO *scan : plan.m_ror_scans) m_ror_scans.push_back(scan);
m_is_covering = plan.m_is_covering;
m_covered_fields = plan.m_covered_fields;
m_out_rows = plan.m_out_rows;
m_total_cost = plan.m_total_cost;
m_index_records = plan.m_index_records;
m_index_read_cost = plan.m_index_read_cost;
return *this;
}
/*
Get selectivity of adding a ROR scan to the ROR-intersection.
SYNOPSIS
get_scan_selectivity()
info ROR-interection, an intersection of ROR index scans
scan ROR scan that may or may not improve the selectivity
of 'info'
NOTES
Suppose we have conditions on several keys
cond=k_11=c_11 AND k_12=c_12 AND ... // key_parts of first key in 'info'
k_21=c_21 AND k_22=c_22 AND ... // key_parts of second key in 'info'
...
k_n1=c_n1 AND k_n3=c_n3 AND ... (1) //key_parts of 'scan'
where k_ij may be the same as any k_pq (i.e. keys may have common parts).
Note that for ROR retrieval, only equality conditions are usable so there
are no open ranges (e.g., k_ij > c_ij) in 'scan' or 'info'.
FIXME: This isn't true in practice; e.g. i_main.costmodel_planchange ends
up calling this function with an inequality condition, and thus the
estimation is probably wrong (since the code assumes only one element in the
tree).
A full row is retrieved if entire condition holds.
The recursive procedure for finding P(cond) is as follows:
First step:
Pick 1st part of 1st key and break conjunction (1) into two parts:
cond= (k_11=c_11 AND R)
Here R may still contain condition(s) equivalent to k_11=c_11.
Nevertheless, the following holds:
P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
Mark k_11 as fixed field (and satisfied condition) F, save P(F),
save R to be cond and proceed to recursion step.
Recursion step:
We have a set of fixed fields/satisfied conditions) F, probability P(F),
and remaining conjunction R
Pick next key part on current key and its condition "k_ij=c_ij".
We will add "k_ij=c_ij" into F and update P(F).
Lets denote k_ij as t, R = t AND R1, where R1 may still contain t. Then
P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
(where '|' mean conditional probability, not "or")
Consider the first multiplier in (2). One of the following holds:
a) F contains condition on field used in t (i.e. t AND F = F).
Then P(t|F) = 1
b) F doesn't contain condition on field used in t. Then F and t are
considered independent.
P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
= P(t|fields_before_t_in_key).
P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
#records(fields_before_t_in_key, t)
The second multiplier is calculated by applying this step recursively.
IMPLEMENTATION
This function calculates the result of application of the "recursion step"
described above for all fixed key members of a single key, accumulating set
of covered fields, selectivity, etc.
The calculation is conducted as follows:
Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
n_{k1} n_{k2}
--------- * --------- * .... (3)
n_{k1-1} n_{k2-1}
where k1,k2,... are key parts which fields were not yet marked as fixed
( this is result of application of option b) of the recursion step for
parts of a single key).
Since it is reasonable to expect that most of the fields are not marked
as fixed, we calculate (3) as
n_{i1} n_{i2}
(3) = n_{max_key_part} / ( --------- * --------- * .... )
n_{i1-1} n_{i2-1}
where i1,i2, .. are key parts that were already marked as fixed.
In order to minimize number of expensive records_in_range calls we
group and reduce adjacent fractions. Note that on the optimizer's
request, index statistics may be used instead of records_in_range
@see RANGE_OPT_PARAM::use_index_statistics.
RETURN
Selectivity of given ROR scan, a number between 0 and 1. 1 means that
adding 'scan' to the intersection does not improve the selectivity.
*/
double ROR_intersect_plan::get_scan_selectivity(
const ROR_SCAN_INFO *scan) const {
double selectivity_mult = 1.0;
const TABLE *const table = m_param->table;
const KEY_PART_INFO *const key_part = table->key_info[scan->keynr].key_part;
/**
key values tuple, used to store both min_range.key and
max_range.key. This function is only called for equality ranges;
open ranges (e.g. "min_value < X < max_value") cannot be used for
rowid ordered retrieval, so in this function we know that
min_range.key == max_range.key
*/
uchar key_val[MAX_KEY_LENGTH + MAX_FIELD_WIDTH];
uchar *key_ptr = key_val;
SEL_ARG *tuple_arg = nullptr;
key_part_map keypart_map = 0;
bool cur_covered;
bool prev_covered = IsBitSet(key_part->fieldnr - 1, m_covered_fields);
key_range min_range;
key_range max_range;
min_range.key = key_val;
min_range.flag = HA_READ_KEY_EXACT;
max_range.key = key_val;
max_range.flag = HA_READ_AFTER_KEY;
ha_rows prev_records = table->file->stats.records;
DBUG_TRACE;
for (SEL_ROOT *sel_root = scan->sel_root; sel_root;
sel_root = sel_root->root->next_key_part) {
DBUG_PRINT("info", ("sel_root step"));
cur_covered =
IsBitSet(key_part[sel_root->root->part].fieldnr - 1, m_covered_fields);
if (cur_covered != prev_covered) {
/* create (part1val, ..., part{n-1}val) tuple. */
bool is_null_range = false;
ha_rows records;
if (!tuple_arg) {
tuple_arg = scan->sel_root->root;
/* Here we use the length of the first key part */
tuple_arg->store_min_value(key_part[0].store_length, &key_ptr, 0);
is_null_range |= tuple_arg->is_null_interval();
keypart_map = 1;
}
while (tuple_arg->next_key_part != sel_root) {
tuple_arg = tuple_arg->next_key_part->root;
tuple_arg->store_min_value(key_part[tuple_arg->part].store_length,
&key_ptr, 0);
is_null_range |= tuple_arg->is_null_interval();
keypart_map = (keypart_map << 1) | 1;
}
min_range.length = max_range.length = (size_t)(key_ptr - key_val);
min_range.keypart_map = max_range.keypart_map = keypart_map;
/*
Get the number of rows in this range. This is done by calling
records_in_range() unless all these are true:
1) The user has requested that index statistics should be used
for equality ranges to avoid the incurred overhead of
index dives in records_in_range()
2) The range is not on the form "x IS NULL". The reason is
that the number of rows with this value are likely to be
very different than the values in the index statistics
3) Index statistics is available.
@see key_val
*/
if (!m_param->use_index_statistics || // (1)
is_null_range || // (2)
!table->key_info[scan->keynr].has_records_per_key(
tuple_arg->part)) // (3)
{
DBUG_EXECUTE_IF("crash_records_in_range", DBUG_SUICIDE(););
assert(min_range.length > 0);
assert(
!table->pos_in_table_list->is_derived_unfinished_materialization());
records =
table->file->records_in_range(scan->keynr, &min_range, &max_range);
} else {
// Use index statistics
records = static_cast<ha_rows>(
table->key_info[scan->keynr].records_per_key(tuple_arg->part));
}
if (cur_covered) {
/* uncovered -> covered */
double tmp = rows2double(records) / rows2double(prev_records);
DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
selectivity_mult *= tmp;
prev_records = HA_POS_ERROR;
} else {
/* covered -> uncovered */
prev_records = records;
}
}
prev_covered = cur_covered;
}
if (!prev_covered) {
double tmp =
rows2double(table->quick_rows[scan->keynr]) / rows2double(prev_records);
DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
selectivity_mult *= tmp;
}
// Todo: This assert fires in PB sysqa RQG tests.
// assert(selectivity_mult <= 1.0);
DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
return selectivity_mult;
}
/*
Check if adding a ROR scan to a ROR-intersection reduces its cost of
ROR-intersection and if yes, update parameters of ROR-intersection,
including its cost.
SYNOPSIS
add()
needed_fields Bitmask of fields needed by the query.
ror_scan ROR scan info to add.
is_cpk_scan If true, add the scan as CPK scan (this can be inferred
from other parameters and is passed separately only to
avoid duplicating the inference code)
trace_costs Optimizer trace object cost details are added to
ignore_cost Ignore cost check due to use of INDEX_MERGE hint
NOTES
Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
intersection decreases. The cost of ROR-intersection is calculated as
follows:
cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval
When we add a scan the first increases and the second decreases.
cost_of_full_rows_retrieval=
(union of indexes used covers all needed fields) ?
cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
0
E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
ror_scan_selectivity({scan1}, scan2) * ... *
ror_scan_selectivity({scan1,...}, scanN).
RETURN
true ROR scan added to ROR-intersection, cost updated.
false It doesn't make sense to add this ROR scan to this ROR-intersection.
*/
bool ROR_intersect_plan::add(OverflowBitset needed_fields,
ROR_SCAN_INFO *ror_scan, bool is_cpk_scan,
Opt_trace_object *trace_costs, bool ignore_cost) {
double selectivity_mult = 1.0;
DBUG_TRACE;
DBUG_PRINT("info", ("Current out_rows= %g", m_out_rows));
DBUG_PRINT("info", ("Adding scan on %s",
m_param->table->key_info[ror_scan->keynr].name));
DBUG_PRINT("info", ("is_cpk_scan: %d", is_cpk_scan));
selectivity_mult = get_scan_selectivity(ror_scan);
if (selectivity_mult == 1.0 && !ignore_cost) {
/* Don't add this scan if it doesn't improve selectivity. */
DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
return false;
}
m_out_rows *= selectivity_mult;
if (is_cpk_scan) {
/*
CPK scan is used to filter out rows. We apply filtering for each
record of every scan. For each record we assume that one key
compare is done:
*/
const Cost_model_table *const cost_model = m_param->table->cost_model();
const double idx_cost =
cost_model->key_compare_cost(rows2double(m_index_records));
m_index_read_cost.add_cpu(idx_cost);
if (trace_costs != nullptr) trace_costs->add("index_scan_cost", idx_cost);
} else {
m_index_records += m_param->table->quick_rows[ror_scan->keynr];
m_index_read_cost += ror_scan->index_read_cost;
if (trace_costs != nullptr)
trace_costs->add("index_scan_cost", ror_scan->index_read_cost);
m_covered_fields = OverflowBitset::Or(
m_param->temp_mem_root, m_covered_fields, ror_scan->covered_fields);
if (!m_is_covering && IsSubset(needed_fields, m_covered_fields)) {
DBUG_PRINT("info", ("ROR-intersect is covering now"));
m_is_covering = true;
}
m_ror_scans.push_back(ror_scan);
}
m_total_cost = m_index_read_cost;
if (trace_costs != nullptr)
trace_costs->add("cumulated_index_scan_cost", m_index_read_cost);
if (!m_is_covering) {
Cost_estimate sweep_cost;
JOIN *join = m_param->query_block->join;
const bool is_interrupted = join && join->tables != 1;
get_sweep_read_cost(m_param->table, double2rows(m_out_rows), is_interrupted,
&sweep_cost);
m_total_cost += sweep_cost;
if (trace_costs != nullptr) trace_costs->add("disk_sweep_cost", sweep_cost);
} else if (trace_costs != nullptr)
trace_costs->add("disk_sweep_cost", 0);
DBUG_PRINT("info", ("New out_rows: %g", m_out_rows));
DBUG_PRINT("info", ("New cost: %g, %scovering", m_total_cost.total_cost(),
m_is_covering ? "" : "non-"));
return true;
}
AccessPath *MakeRowIdOrderedIndexScanAccessPath(ROR_SCAN_INFO *scan,
TABLE *table,
KEY_PART *used_key_part,
bool reuse_handler,
MEM_ROOT *mem_root) {
AccessPath *path = new (mem_root) AccessPath;
path->type = AccessPath::INDEX_RANGE_SCAN;
// TODO(sgunders): The initial cost is high (it needs to read all rows and
// sort), so we should not have zero init_cost.
path->set_cost_before_filter(scan->index_read_cost.total_cost());
path->set_cost(path->cost_before_filter());
path->set_init_cost(0.0);
path->set_num_output_rows(scan->records);
path->num_output_rows_before_filter = path->num_output_rows();
path->index_range_scan().used_key_part = used_key_part;
path->index_range_scan().ranges = &scan->ranges[0];
path->index_range_scan().num_ranges = scan->ranges.size();
path->index_range_scan().mrr_flags = HA_MRR_SORTED;
path->index_range_scan().mrr_buf_size = 0;
path->index_range_scan().index = scan->keynr;
path->index_range_scan().num_used_key_parts = scan->used_key_parts;
path->index_range_scan().can_be_used_for_ror = true;
path->index_range_scan().need_rows_in_rowid_order = true;
path->index_range_scan().can_be_used_for_imerge = false; // Irrelevant.
path->index_range_scan().reuse_handler = reuse_handler;
path->index_range_scan().geometry =
Overlaps(table->key_info[scan->keynr].flags, HA_SPATIAL);
path->index_range_scan().reverse = false;
return path;
}
/*
Get best ROR-intersection plan using non-covering ROR-intersection search
algorithm. The returned plan may be covering.
SYNOPSIS
get_best_ror_intersect()
param Parameter from test_quick_select function.
tree Transformed restriction condition to be used to look
for ROR scans.
cost_est Do not return read plans with cost > cost_est.
are_all_covering [out] set to true if union of all scans covers all
fields needed by the query (and it is possible to build
a covering ROR-intersection)
force_index_merge_result true if the function must return cheapest
intersection object when INDEX_MERGE hint is
used without specified indexes, false otherwise.
NOTES
get_key_scans_params must be called before this function can be called.
When this function is called by ROR-union construction algorithm it
assumes it is building an uncovered ROR-intersection (and thus # of full
records to be retrieved is wrong here). This is a hack.
IMPLEMENTATION
The approximate best non-covering plan search algorithm is as follows:
find_min_ror_intersection_scan()
{
R= select all ROR scans;
order R by (E(#records_matched) * key_record_length).
S= first(R); -- set of scans that will be used for ROR-intersection
R= R-first(S);
min_cost= cost(S);
min_scan= make_scan(S);
while (R is not empty)
{
firstR= R - first(R);
if (!selectivity(S + firstR < selectivity(S)))
continue;
S= S + first(R);
if (cost(S) < min_cost)
{
min_cost= cost(S);
min_scan= make_scan(S);
}
}
return min_scan;
}
See add function for ROR intersection costs.
Special handling for Clustered PK scans
Clustered PK contains all table fields, so using it as a regular scan in
index intersection doesn't make sense: a range scan on CPK will be less
expensive in this case.
Clustered PK scan has special handling in ROR-intersection: it is not used
to retrieve rows, instead its condition is used to filter row references
we get from scans on other keys.
RETURN
ROR-intersection table read plan
NULL if out of memory or no suitable plan found.
*/
AccessPath *get_best_ror_intersect(THD *thd, const RANGE_OPT_PARAM *param,
TABLE *table,
bool index_merge_intersect_allowed,
SEL_TREE *tree, double cost_est,
bool force_index_merge_result,
bool reuse_handler) {
uint idx;
Cost_estimate min_cost;
Opt_trace_context *const trace = &thd->opt_trace;
DBUG_TRACE;
bool use_cheapest_index_merge = false;
bool force_index_merge =
idx_merge_hint_state(thd, table, &use_cheapest_index_merge);
Opt_trace_object trace_ror(trace, "analyzing_roworder_intersect");
min_cost.set_max_cost();
if (tree->n_ror_scans < 2 ||
((!table->file->stats.records || !index_merge_intersect_allowed) &&
!force_index_merge)) {
trace_ror.add("usable", false);
if (tree->n_ror_scans < 2)
trace_ror.add_alnum("cause", "too_few_roworder_scans");
else
trace_ror.add("need_tracing", true);
return nullptr;
}
/*
Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of
them. Also find and save clustered PK scan if there is one.
*/
ROR_SCAN_INFO *cpk_scan = nullptr;
uint cpk_no;
bool cpk_scan_used = false;
cpk_no = ((table->file->primary_key_is_clustered()) ? table->s->primary_key
: MAX_KEY);
Mem_root_array<ROR_SCAN_INFO *> ror_scans(param->temp_mem_root);
OverflowBitset needed_fields = get_needed_fields(param);
for (idx = 0; idx < param->keys; idx++) {
ROR_SCAN_INFO *scan;
if (!tree->ror_scans_map.is_set(idx)) continue;
if (!(scan = make_ror_scan(param, idx, tree->keys[idx], needed_fields)))
return nullptr;
if (param->real_keynr[idx] == cpk_no) {
cpk_scan = scan;
tree->n_ror_scans--;
} else {
ror_scans.push_back(scan);
}
}
DBUG_EXECUTE("info", print_ror_scans(table, "original", ror_scans););
/*
Get best ROR-intersection using an approximate algorithm.
*/
find_intersect_order(&ror_scans, needed_fields, param->temp_mem_root);
DBUG_EXECUTE("info", print_ror_scans(table, "ordered", ror_scans););
/*
Note: trace_isect_idx.end() is called to close this object after
this while-loop.
*/
Opt_trace_array trace_isect_idx(trace, "intersecting_indexes");
ROR_intersect_plan cur_plan(param, needed_fields.capacity()),
best_plan(param, needed_fields.capacity());
for (uint index = 0; index < ror_scans.size() && !cur_plan.m_is_covering;
index++) {
ROR_SCAN_INFO *cur_scan = ror_scans[index];
Opt_trace_object trace_idx(trace);
trace_idx.add_utf8("index", table->key_info[cur_scan->keynr].name);
if (!compound_hint_key_enabled(table, cur_scan->keynr,
INDEX_MERGE_HINT_ENUM)) {
trace_idx.add("usable", false).add_alnum("cause", "index_merge_hint");
continue;
}
/* S= S + first(R); R= R - first(R); */
if (!cur_plan.add(needed_fields, cur_scan, false, &trace_idx,
force_index_merge && !use_cheapest_index_merge)) {
trace_idx.add("cumulated_total_cost", cur_plan.m_total_cost)
.add("usable", false)
.add_alnum("cause", "does_not_reduce_cost_of_intersect");
continue;
}
trace_idx.add("cumulated_total_cost", cur_plan.m_total_cost)
.add("usable", true)
.add("matching_rows_now", cur_plan.m_out_rows)
.add("isect_covering_with_this_index", cur_plan.m_is_covering);
if (cur_plan.m_total_cost < min_cost ||
(force_index_merge &&
/*
If INDEX_MERGE hint is used without only specified index,
index merge is forced and the cheapest combination of indexes
will be chosen. Since ranges are sorted by index scan cost,
index merge is forced for first two ranges and next ranges are
added only if they reduce total cost and there is no clustered
primary key scan or intersection is covering. If there is
a range by clustered primary key and intersection is not covering,
combination of first index and primary key is considered as
a cheapest intersection.
*/
((best_plan.num_scans() < 2 && force_index_merge_result &&
(!cpk_scan || cur_plan.m_is_covering)) ||
!use_cheapest_index_merge))) {
/* Local minimum found, save it */
best_plan = cur_plan;
min_cost = cur_plan.m_total_cost;
trace_idx.add("chosen", true);
} else {
trace_idx.add("chosen", false).add_alnum("cause", "does_not_reduce_cost");
}
}
// Note: trace_isect_idx trace object is closed here
trace_isect_idx.end();
uint num_scans = best_plan.num_scans();
if (num_scans == 0) {
trace_ror.add("chosen", false)
.add_alnum("cause", "does_not_increase_selectivity");
DBUG_PRINT("info", ("None of scans increase selectivity"));
return nullptr;
}
DBUG_EXECUTE("info", print_ror_scans(table, "best ROR-intersection",
cur_plan.m_ror_scans););
cur_plan = best_plan;
/*
Ok, found the best ROR-intersection of non-CPK key scans.
Check if we should add a CPK scan. If the obtained ROR-intersection is
covering, it doesn't make sense to add CPK scan.
*/
{ // Scope for trace object
Opt_trace_object trace_cpk(trace, "clustered_pk");
if (cpk_scan && !cur_plan.m_is_covering &&
compound_hint_key_enabled(table, cpk_no, INDEX_MERGE_HINT_ENUM)) {
if (cur_plan.add(needed_fields, cpk_scan, true, &trace_cpk, true) &&
((cur_plan.m_total_cost < min_cost) ||
(force_index_merge &&
(!use_cheapest_index_merge ||
(num_scans == 1 && force_index_merge_result))))) {
trace_cpk.add("clustered_pk_scan_added_to_intersect", true)
.add("cumulated_cost", cur_plan.m_total_cost);
cpk_scan_used = true;
best_plan = cur_plan;
} else
trace_cpk.add("clustered_pk_added_to_intersect", false)
.add_alnum("cause", "cost");
} else {
trace_cpk.add("clustered_pk_added_to_intersect", false)
.add_alnum("cause", cpk_scan ? "roworder_is_covering"
: "no_clustered_pk_index");
}
}
/* Ok, return ROR-intersect plan if we have found one */
if ((min_cost.total_cost() < cost_est || force_index_merge) &&
(cpk_scan_used || num_scans > 1)) {
// Create AccessPaths from the ROR child scans.
auto *children = new (param->return_mem_root)
Mem_root_array<AccessPath *>(param->return_mem_root);
if (children == nullptr || children->resize(num_scans)) {
return nullptr;
}
for (unsigned i = 0; i < num_scans; ++i) {
(*children)[i] = MakeRowIdOrderedIndexScanAccessPath(
best_plan.m_ror_scans[i], table,
param->key[best_plan.m_ror_scans[i]->idx],
/*reuse_handler=*/reuse_handler && best_plan.m_is_covering && i == 0,
param->return_mem_root);
}
AccessPath *cpk_child =
cpk_scan_used ? MakeRowIdOrderedIndexScanAccessPath(
cpk_scan, table, param->key[cpk_scan->idx],
/*reuse_handler=*/false, param->return_mem_root)
: nullptr;
AccessPath *path = new (param->return_mem_root) AccessPath;
path->type = AccessPath::ROWID_INTERSECTION;
path->set_cost(best_plan.m_total_cost.total_cost());
/* Prevent divisons by zero */
double best_rows = max(best_plan.m_out_rows, 1.0);
table->quick_condition_rows =
min<ha_rows>(table->quick_condition_rows, best_rows);
path->set_num_output_rows(best_rows);
path->rowid_intersection().table = table;
path->rowid_intersection().children = children;
path->rowid_intersection().cpk_child = cpk_child;
path->rowid_intersection().forced_by_hint = force_index_merge;
path->rowid_intersection().retrieve_full_rows =
!best_plan.m_is_covering; // Can be overridden later.
path->rowid_intersection().need_rows_in_rowid_order =
false; // Can be overridden later.
path->rowid_intersection().reuse_handler = reuse_handler;
path->rowid_intersection().is_covering = best_plan.m_is_covering;
trace_ror.add("rows", path->num_output_rows())
.add("cost", path->cost())
.add("covering", best_plan.m_is_covering)
.add("chosen", true);
DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
"cost %g, records %g",
path->cost(), path->num_output_rows()));
return path;
} else {
trace_ror.add("chosen", false)
.add_alnum("cause", (cost_est > min_cost.total_cost())
? "too_few_indexes_to_merge"
: "cost");
return nullptr;
}
}
static int find_max_used_key_length(const AccessPath *scan) {
int max_used_key_length = 0;
for (const QUICK_RANGE *range :
Bounds_checked_array{scan->index_range_scan().ranges,
scan->index_range_scan().num_ranges}) {
max_used_key_length = std::max<int>(max_used_key_length, range->min_length);
max_used_key_length = std::max<int>(max_used_key_length, range->max_length);
}
return max_used_key_length;
}
void add_keys_and_lengths_rowid_intersection(const AccessPath *path,
String *key_names,
String *used_lengths) {
TABLE *table = path->rowid_intersection().table;
char buf[64];
size_t length;
bool first = true;
for (AccessPath *current : *path->rowid_intersection().children) {
KEY *key_info = table->key_info + current->index_range_scan().index;
if (first)
first = false;
else {
key_names->append(',');
used_lengths->append(',');
}
key_names->append(key_info->name);
length =
longlong10_to_str(find_max_used_key_length(current), buf, 10) - buf;
used_lengths->append(buf, length);
}
AccessPath *cpk_child = path->rowid_intersection().cpk_child;
if (cpk_child) {
KEY *key_info = table->key_info + cpk_child->index_range_scan().index;
key_names->append(',');
key_names->append(key_info->name);
length =
longlong10_to_str(find_max_used_key_length(cpk_child), buf, 10) - buf;
used_lengths->append(',');
used_lengths->append(buf, length);
}
}
void add_keys_and_lengths_rowid_union(const AccessPath *path, String *key_names,
String *used_lengths) {
bool first = true;
for (AccessPath *current : *path->rowid_union().children) {
if (first) {
first = false;
} else {
used_lengths->append(',');
key_names->append(',');
}
::add_keys_and_lengths(current, key_names, used_lengths);
}
}
#ifndef NDEBUG
void dbug_dump_rowid_intersection(
int indent, bool verbose, const Mem_root_array<AccessPath *> &children) {
fprintf(DBUG_FILE, "%*squick ROR-intersect select\n", indent, ""),
fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
for (AccessPath *range_scan : children) {
dbug_dump(range_scan, indent + 2, verbose);
}
fprintf(DBUG_FILE, "%*s}\n", indent, "");
}
void dbug_dump_rowid_union(int indent, bool verbose,
const Mem_root_array<AccessPath *> &children) {
fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
for (AccessPath *child : children) {
::dbug_dump(child, indent + 2, verbose);
}
fprintf(DBUG_FILE, "%*s}\n", indent, "");
}
#endif