forked from colmap/pycolmap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfundamental_matrix.cc
108 lines (92 loc) · 3.75 KB
/
fundamental_matrix.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch at inf.ethz.ch)
#include <iostream>
#include <fstream>
#include "colmap/base/camera.h"
#include "colmap/estimators/fundamental_matrix.h"
#include "colmap/optim/loransac.h"
using namespace colmap;
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/eigen.h>
namespace py = pybind11;
py::dict fundamental_matrix_estimation(
const std::vector<Eigen::Vector2d> points2D1,
const std::vector<Eigen::Vector2d> points2D2,
const double max_error_px,
const double min_inlier_ratio,
const int min_num_trials,
const int max_num_trials,
const double confidence
) {
SetPRNGSeed(0);
// Check that both vectors have the same size.
assert(points2D1.size() == points2D2.size());
// Failure output dictionary.
py::dict failure_dict;
failure_dict["success"] = false;
// Fundamental matrix estimation parameters.
RANSACOptions ransac_options;
ransac_options.max_error = max_error_px;
ransac_options.min_inlier_ratio = min_inlier_ratio;
ransac_options.min_num_trials = min_num_trials;
ransac_options.max_num_trials = max_num_trials;
ransac_options.confidence = confidence;
LORANSAC<
FundamentalMatrixSevenPointEstimator,
FundamentalMatrixEightPointEstimator
> ransac(ransac_options);
// Fundamental matrix estimation.
const auto report = ransac.Estimate(points2D1, points2D2);
if (!report.success) {
return failure_dict;
}
// Recover data from report.
const Eigen::Matrix3d F = report.model;
const size_t num_inliers = report.support.num_inliers;
const auto inlier_mask = report.inlier_mask;
// Convert vector<char> to vector<int>.
std::vector<bool> inliers;
for (auto it : inlier_mask) {
if (it) {
inliers.push_back(true);
} else {
inliers.push_back(false);
}
}
// Success output dictionary.
py::dict success_dict;
success_dict["success"] = true;
success_dict["F"] = F;
success_dict["num_inliers"] = num_inliers;
success_dict["inliers"] = inliers;
return success_dict;
}