forked from moj-analytical-services/splink
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cc_random_graphs.py
55 lines (44 loc) · 1.72 KB
/
test_cc_random_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# python3 -m pytest tests/test_cc_random_graphs.py
import pytest
from tests.cc_testing_utils import (
check_df_equality,
generate_random_graph,
networkx_solve,
register_cc_df,
run_cc_implementation,
)
###############################################################################
# Accuracy Testing
###############################################################################
@pytest.mark.parametrize("execution_number", range(20))
def test_small_erdos_renyi_graph(execution_number):
g = generate_random_graph(graph_size=500)
linker, predict_df = register_cc_df(g)
assert check_df_equality(
run_cc_implementation(linker, predict_df).sort_values(
by=["node_id", "representative"]
),
networkx_solve(g).sort_values(by=["node_id", "representative"]),
)
@pytest.mark.skip(reason="Slow")
@pytest.mark.parametrize("execution_number", range(10))
def test_medium_erdos_renyi_graph(execution_number):
g = generate_random_graph(graph_size=10000)
linker, predict_df = register_cc_df(g)
assert check_df_equality(
run_cc_implementation(linker, predict_df).sort_values(
by=["node_id", "representative"]
),
networkx_solve(g).sort_values(by=["node_id", "representative"]),
)
@pytest.mark.skip(reason="Slow")
@pytest.mark.parametrize("execution_number", range(2))
def test_large_erdos_renyi_graph(execution_number):
g = generate_random_graph(graph_size=100000)
linker, predict_df = register_cc_df(g)
assert check_df_equality(
run_cc_implementation(linker, predict_df).sort_values(
by=["node_id", "representative"]
),
networkx_solve(g).sort_values(by=["node_id", "representative"]),
)