-
Notifications
You must be signed in to change notification settings - Fork 573
/
Copy pathpy-disasm.c
1896 lines (1594 loc) · 60.6 KB
/
py-disasm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Python interface to instruction disassembly.
Copyright (C) 2021-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "python-internal.h"
#include "language.h"
#include "dis-asm.h"
#include "arch-utils.h"
#include "charset.h"
#include "disasm.h"
#include "progspace.h"
/* Implement gdb.disassembler.DisassembleInfo type. An object of this type
represents a single disassembler request from GDB. */
struct disasm_info_object
{
PyObject_HEAD
/* The architecture in which we are disassembling. */
struct gdbarch *gdbarch;
/* The program_space in which we are disassembling. */
struct program_space *program_space;
/* Address of the instruction to disassemble. */
bfd_vma address;
/* The disassemble_info passed from core GDB, this contains the
callbacks necessary to read the instruction from core GDB, and to
print the disassembled instruction. */
disassemble_info *gdb_info;
/* If copies of this object are created then they are chained together
via this NEXT pointer, this allows all the copies to be invalidated at
the same time as the parent object. */
struct disasm_info_object *next;
};
extern PyTypeObject disasm_info_object_type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("disasm_info_object");
/* Implement gdb.disassembler.DisassembleAddressPart type. An object of
this type represents a small part of a disassembled instruction; a part
that is an address that should be printed using a call to GDB's
internal print_address function. */
struct disasm_addr_part_object
{
PyObject_HEAD
/* The address to be formatted. */
bfd_vma address;
/* A gdbarch. This is only needed in the case where the user asks for
the DisassemblerAddressPart to be converted to a string. When we
return this part to GDB within a DisassemblerResult then GDB will use
the gdbarch from the initial disassembly request. */
struct gdbarch *gdbarch;
};
extern PyTypeObject disasm_addr_part_object_type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("disasm_addr_part_object");
/* Implement gdb.disassembler.DisassembleTextPart type. An object of
this type represents a small part of a disassembled instruction; a part
that is a piece of test along with an associated style. */
struct disasm_text_part_object
{
PyObject_HEAD
/* The string that is this part. */
std::string *string;
/* The style to use when displaying this part. */
enum disassembler_style style;
};
extern PyTypeObject disasm_text_part_object_type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("disasm_text_part_object");
extern PyTypeObject disasm_part_object_type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("PyObject");
/* Implement gdb.disassembler.DisassemblerResult type, an object that holds
the result of calling the disassembler. This is mostly the length of
the disassembled instruction (in bytes), and the string representing the
disassembled instruction. */
struct disasm_result_object
{
PyObject_HEAD
/* The length of the disassembled instruction in bytes. */
int length;
/* A vector containing all the parts of the disassembled instruction.
Each part will be a DisassemblerPart sub-class. */
std::vector<gdbpy_ref<>> *parts;
};
extern PyTypeObject disasm_result_object_type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("disasm_result_object");
/* When this is false we fast path out of gdbpy_print_insn, which should
keep the performance impact of the Python disassembler down. This is
set to true from Python by calling gdb.disassembler._set_enabled() when
the user registers a disassembler. */
static bool python_print_insn_enabled = false;
/* A sub-class of gdb_disassembler that holds a pointer to a Python
DisassembleInfo object. A pointer to an instance of this class is
placed in the application_data field of the disassemble_info that is
used when we call gdbarch_print_insn. */
struct gdbpy_disassembler : public gdb_disassemble_info
{
/* Constructor. */
gdbpy_disassembler (disasm_info_object *obj);
/* Get the DisassembleInfo object pointer. */
disasm_info_object *
py_disasm_info () const
{
return m_disasm_info_object;
}
/* Callbacks used by disassemble_info. */
static void memory_error_func (int status, bfd_vma memaddr,
struct disassemble_info *info) noexcept;
static void print_address_func (bfd_vma addr,
struct disassemble_info *info) noexcept;
static int read_memory_func (bfd_vma memaddr, gdb_byte *buff,
unsigned int len,
struct disassemble_info *info) noexcept;
/* Callback used as the disassemble_info's fprintf_func callback. The
DIS_INFO pointer is a pointer to a gdbpy_disassembler object. */
static int fprintf_func (void *dis_info, const char *format, ...) noexcept
ATTRIBUTE_PRINTF(2,3);
/* Callback used as the disassemble_info's fprintf_styled_func callback.
The DIS_INFO pointer is a pointer to a gdbpy_disassembler. */
static int fprintf_styled_func (void *dis_info,
enum disassembler_style style,
const char *format, ...) noexcept
ATTRIBUTE_PRINTF(3,4);
/* Helper used by fprintf_func and fprintf_styled_func. This function
creates a new DisassemblerTextPart and adds it to the disassembler's
parts list. The actual disassembler is accessed through DIS_INFO,
which is a pointer to the gdbpy_disassembler object. */
static int vfprintf_styled_func (void *dis_info,
enum disassembler_style style,
const char *format, va_list args) noexcept
ATTRIBUTE_PRINTF(3,0);
/* Return a reference to an optional that contains the address at which a
memory error occurred. The optional will only have a value if a
memory error actually occurred. */
const std::optional<CORE_ADDR> &memory_error_address () const
{ return m_memory_error_address; }
/* Return the content of the disassembler as a string. The contents are
moved out of the disassembler, so after this call the disassembler
contents have been reset back to empty. */
std::vector<gdbpy_ref<>> release ()
{
return std::move (m_parts);
}
/* If there is a Python exception stored in this disassembler then
restore it (i.e. set the PyErr_* state), clear the exception within
this disassembler, and return true. There must be no current
exception set (i.e. !PyErr_Occurred()) when this function is called,
as any such exception might get lost.
Otherwise, there is no exception stored in this disassembler, return
false. */
bool restore_exception ()
{
gdb_assert (!PyErr_Occurred ());
if (m_stored_exception.has_value ())
{
gdbpy_err_fetch ex = std::move (*m_stored_exception);
m_stored_exception.reset ();
ex.restore ();
return true;
}
return false;
}
private:
/* The list of all the parts that make up this disassembled instruction.
This is populated as a result of the callbacks from libopcodes as the
instruction is disassembled. */
std::vector<gdbpy_ref<>> m_parts;
/* The DisassembleInfo object we are disassembling for. */
disasm_info_object *m_disasm_info_object;
/* When the user indicates that a memory error has occurred then the
address of the memory error is stored in here. */
std::optional<CORE_ADDR> m_memory_error_address;
/* Move the exception EX into this disassembler object. */
void store_exception (gdbpy_err_fetch &&ex)
{
/* The only calls to store_exception are from read_memory_func, which
will return early if there's already an exception stored. */
gdb_assert (!m_stored_exception.has_value ());
m_stored_exception.emplace (std::move (ex));
}
/* Return true if there is an exception stored in this disassembler. */
bool has_stored_exception () const
{
return m_stored_exception.has_value ();
}
/* Store a single exception. This is used to pass Python exceptions back
from ::memory_read to disasmpy_builtin_disassemble. */
std::optional<gdbpy_err_fetch> m_stored_exception;
};
/* Return true if OBJ is still valid, otherwise, return false. A valid OBJ
will have a non-nullptr gdb_info field. */
static bool
disasm_info_object_is_valid (disasm_info_object *obj)
{
return obj->gdb_info != nullptr;
}
/* Fill in OBJ with all the other arguments. */
static void
disasm_info_fill (disasm_info_object *obj, struct gdbarch *gdbarch,
program_space *progspace, bfd_vma address,
disassemble_info *di, disasm_info_object *next)
{
obj->gdbarch = gdbarch;
obj->program_space = progspace;
obj->address = address;
obj->gdb_info = di;
obj->next = next;
}
/* Implement DisassembleInfo.__init__. Takes a single argument that must
be another DisassembleInfo object and copies the contents from the
argument into this new object. */
static int
disasm_info_init (PyObject *self, PyObject *args, PyObject *kwargs)
{
static const char *keywords[] = { "info", NULL };
PyObject *info_obj;
if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "O!", keywords,
&disasm_info_object_type,
&info_obj))
return -1;
disasm_info_object *other = (disasm_info_object *) info_obj;
disasm_info_object *info = (disasm_info_object *) self;
disasm_info_fill (info, other->gdbarch, other->program_space,
other->address, other->gdb_info, other->next);
other->next = info;
/* As the OTHER object now holds a pointer to INFO we inc the ref count
on INFO. This stops INFO being deleted until OTHER has gone away. */
Py_INCREF ((PyObject *) info);
return 0;
}
/* The tp_dealloc callback for the DisassembleInfo type. */
static void
disasm_info_dealloc (PyObject *self)
{
disasm_info_object *obj = (disasm_info_object *) self;
/* We no longer care about the object our NEXT pointer points at, so we
can decrement its reference count. This macro handles the case when
NEXT is nullptr. */
Py_XDECREF ((PyObject *) obj->next);
/* Now core deallocation behavior. */
Py_TYPE (self)->tp_free (self);
}
/* Implement __repr__ for the DisassembleInfo type. */
static PyObject *
disasmpy_info_repr (PyObject *self)
{
disasm_info_object *obj = (disasm_info_object *) self;
const char *arch_name
= (gdbarch_bfd_arch_info (obj->gdbarch))->printable_name;
return PyUnicode_FromFormat ("<%s address=%s architecture=%s>",
Py_TYPE (obj)->tp_name,
core_addr_to_string_nz (obj->address),
arch_name);
}
/* Implement DisassembleInfo.is_valid(), really just a wrapper around the
disasm_info_object_is_valid function above. */
static PyObject *
disasmpy_info_is_valid (PyObject *self, PyObject *args)
{
disasm_info_object *disasm_obj = (disasm_info_object *) self;
if (disasm_info_object_is_valid (disasm_obj))
Py_RETURN_TRUE;
Py_RETURN_FALSE;
}
/* Set the Python exception to be a gdb.MemoryError object, with ADDRESS
as its payload. */
static void
disasmpy_set_memory_error_for_address (CORE_ADDR address)
{
PyObject *address_obj = gdb_py_object_from_longest (address).release ();
PyErr_SetObject (gdbpy_gdb_memory_error, address_obj);
}
/* Create a new DisassemblerTextPart and return a gdbpy_ref wrapper for
the new object. STR is the string content of the part and STYLE is the
style to be used when GDB displays this part. */
static gdbpy_ref<>
make_disasm_text_part (std::string &&str, enum disassembler_style style)
{
PyTypeObject *type = &disasm_text_part_object_type;
disasm_text_part_object *text_part
= (disasm_text_part_object *) type->tp_alloc (type, 0);
text_part->string = new std::string (str);
text_part->style = style;
return gdbpy_ref<> ((PyObject *) text_part);
}
/* Create a new DisassemblerAddressPart and return a gdbpy_ref wrapper for
the new object. GDBARCH is the architecture used when formatting the
address, and ADDRESS is the numerical address to be displayed. */
static gdbpy_ref<>
make_disasm_addr_part (struct gdbarch *gdbarch, CORE_ADDR address)
{
PyTypeObject *type = &disasm_addr_part_object_type;
disasm_addr_part_object *addr_part
= (disasm_addr_part_object *) type->tp_alloc (type, 0);
addr_part->address = address;
addr_part->gdbarch = gdbarch;
return gdbpy_ref<> ((PyObject *) addr_part);
}
/* Ensure that a gdb.disassembler.DisassembleInfo is valid. */
#define DISASMPY_DISASM_INFO_REQUIRE_VALID(Info) \
do { \
if (!disasm_info_object_is_valid (Info)) \
{ \
PyErr_SetString (PyExc_RuntimeError, \
_("DisassembleInfo is no longer valid.")); \
return nullptr; \
} \
} while (0)
/* Implement DisassembleInfo.text_part method. Creates and returns a new
DisassemblerTextPart object. */
static PyObject *
disasmpy_info_make_text_part (PyObject *self, PyObject *args,
PyObject *kwargs)
{
disasm_info_object *obj = (disasm_info_object *) self;
DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
static const char *keywords[] = { "style", "string", NULL };
int style_num;
const char *string;
if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "is", keywords,
&style_num, &string))
return nullptr;
if (style_num < 0 || style_num > ((int) dis_style_comment_start))
{
PyErr_SetString (PyExc_ValueError,
_("Invalid disassembler style."));
return nullptr;
}
if (strlen (string) == 0)
{
PyErr_SetString (PyExc_ValueError,
_("String must not be empty."));
return nullptr;
}
gdbpy_ref<> text_part
= make_disasm_text_part (std::string (string),
(enum disassembler_style) style_num);
return text_part.release ();
}
/* Implement DisassembleInfo.address_part method. Creates and returns a
new DisassemblerAddressPart object. */
static PyObject *
disasmpy_info_make_address_part (PyObject *self, PyObject *args,
PyObject *kwargs)
{
disasm_info_object *obj = (disasm_info_object *) self;
DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
static const char *keywords[] = { "address", NULL };
CORE_ADDR address;
PyObject *address_object;
if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "O", keywords,
&address_object))
return nullptr;
if (get_addr_from_python (address_object, &address) < 0)
return nullptr;
return make_disasm_addr_part (obj->gdbarch, address).release ();
}
/* Return a string representation of TEXT_PART. The returned string does
not include any styling. */
static std::string
disasmpy_part_to_string (const disasm_text_part_object *text_part)
{
gdb_assert (text_part->string != nullptr);
return *(text_part->string);
}
/* Return a string representation of ADDR_PART. The returned string does
not include any styling. */
static std::string
disasmpy_part_to_string (const disasm_addr_part_object *addr_part)
{
string_file buf;
print_address (addr_part->gdbarch, addr_part->address, &buf);
return buf.release ();
}
/* PARTS is a vector of Python objects, each is a sub-class of
DisassemblerPart. Create a string by concatenating the string
representation of each part, and return this new string.
Converting an address part requires that we call back into GDB core,
which could throw an exception. As such, calls to this function should
be wrapped with a try/catch. */
static std::string
disasmpy_parts_list_to_string (const std::vector<gdbpy_ref<>> &parts)
{
std::string str;
for (auto p : parts)
{
if (Py_TYPE (p.get ()) == &disasm_text_part_object_type)
{
disasm_text_part_object *text_part
= (disasm_text_part_object *) p.get ();
str += disasmpy_part_to_string (text_part);
}
else
{
gdb_assert (Py_TYPE (p.get ()) == &disasm_addr_part_object_type);
disasm_addr_part_object *addr_part
= (disasm_addr_part_object *) p.get ();
str += disasmpy_part_to_string (addr_part);
}
}
return str;
}
/* Initialise OBJ, a DisassemblerResult object with LENGTH and PARTS.
OBJ might already have been initialised, in which case any existing
content should be discarded before the new PARTS are moved in. */
static void
disasmpy_init_disassembler_result (disasm_result_object *obj, int length,
std::vector<gdbpy_ref<>> &&parts)
{
if (obj->parts == nullptr)
obj->parts = new std::vector<gdbpy_ref<>>;
else
obj->parts->clear ();
obj->length = length;
*(obj->parts) = std::move (parts);
}
/* Implement gdb.disassembler.builtin_disassemble(). Calls back into GDB's
builtin disassembler. The first argument is a DisassembleInfo object
describing what to disassemble. The second argument is optional and
provides a mechanism to modify the memory contents that the builtin
disassembler will actually disassemble.
Returns an instance of gdb.disassembler.DisassemblerResult, an object
that wraps a disassembled instruction, or it raises a
gdb.MemoryError. */
static PyObject *
disasmpy_builtin_disassemble (PyObject *self, PyObject *args, PyObject *kw)
{
PyObject *info_obj;
static const char *keywords[] = { "info", nullptr };
if (!gdb_PyArg_ParseTupleAndKeywords (args, kw, "O!", keywords,
&disasm_info_object_type, &info_obj))
return nullptr;
disasm_info_object *disasm_info = (disasm_info_object *) info_obj;
DISASMPY_DISASM_INFO_REQUIRE_VALID (disasm_info);
/* Where the result will be written. */
gdbpy_disassembler disassembler (disasm_info);
/* Now actually perform the disassembly. LENGTH is set to the length of
the disassembled instruction, or -1 if there was a memory-error
encountered while disassembling. See below more more details on
handling of -1 return value. */
int length = gdbarch_print_insn (disasm_info->gdbarch, disasm_info->address,
disassembler.disasm_info ());
/* It is possible that, while calling a user overridden memory read
function, a Python exception was raised that couldn't be
translated into a standard memory-error. In this case the first such
exception is stored in the disassembler and restored here. */
if (disassembler.restore_exception ())
return nullptr;
if (length == -1)
{
/* In an ideal world, every disassembler should always call the
memory error function before returning a status of -1 as the only
error a disassembler should encounter is a failure to read
memory. Unfortunately, there are some disassemblers who don't
follow this rule, and will return -1 without calling the memory
error function.
To make the Python API simpler, we just classify everything as a
memory error, but the message has to be modified for the case
where the disassembler didn't call the memory error function. */
if (disassembler.memory_error_address ().has_value ())
{
CORE_ADDR addr = *disassembler.memory_error_address ();
disasmpy_set_memory_error_for_address (addr);
}
else
{
auto content = disassembler.release ();
std::string str;
try
{
str = disasmpy_parts_list_to_string (content);
}
catch (const gdb_exception &except)
{
return gdbpy_handle_gdb_exception (nullptr, except);
}
if (!str.empty ())
PyErr_SetString (gdbpy_gdberror_exc, str.c_str ());
else
PyErr_SetString (gdbpy_gdberror_exc,
_("Unknown disassembly error."));
}
return nullptr;
}
/* Instructions are either non-zero in length, or we got an error,
indicated by a length of -1, which we handled above. */
gdb_assert (length > 0);
/* We should not have seen a memory error in this case. */
gdb_assert (!disassembler.memory_error_address ().has_value ());
/* Create a DisassemblerResult containing the results. */
PyTypeObject *type = &disasm_result_object_type;
gdbpy_ref<disasm_result_object> res
((disasm_result_object *) type->tp_alloc (type, 0));
auto content = disassembler.release ();
disasmpy_init_disassembler_result (res.get (), length, std::move (content));
return reinterpret_cast<PyObject *> (res.release ());
}
/* Implement gdb._set_enabled function. Takes a boolean parameter, and
sets whether GDB should enter the Python disassembler code or not.
This is called from within the Python code when a new disassembler is
registered. When no disassemblers are registered the global C++ flag
is set to false, and GDB never even enters the Python environment to
check for a disassembler.
When the user registers a new Python disassembler, the global C++ flag
is set to true, and now GDB will enter the Python environment to check
if there's a disassembler registered for the current architecture. */
static PyObject *
disasmpy_set_enabled (PyObject *self, PyObject *args, PyObject *kw)
{
PyObject *newstate;
static const char *keywords[] = { "state", nullptr };
if (!gdb_PyArg_ParseTupleAndKeywords (args, kw, "O", keywords,
&newstate))
return nullptr;
if (!PyBool_Check (newstate))
{
PyErr_SetString (PyExc_TypeError,
_("The value passed to `_set_enabled' must be a boolean."));
return nullptr;
}
python_print_insn_enabled = newstate == Py_True;
Py_RETURN_NONE;
}
/* Implement DisassembleInfo.read_memory(LENGTH, OFFSET). Read LENGTH
bytes at OFFSET from the start of the instruction currently being
disassembled, and return a memory buffer containing the bytes.
OFFSET defaults to zero if it is not provided. LENGTH is required. If
the read fails then this will raise a gdb.MemoryError exception. */
static PyObject *
disasmpy_info_read_memory (PyObject *self, PyObject *args, PyObject *kw)
{
disasm_info_object *obj = (disasm_info_object *) self;
DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
gdb_py_longest length, offset = 0;
gdb::unique_xmalloc_ptr<gdb_byte> buffer;
static const char *keywords[] = { "length", "offset", nullptr };
if (!gdb_PyArg_ParseTupleAndKeywords (args, kw,
GDB_PY_LL_ARG "|" GDB_PY_LL_ARG,
keywords, &length, &offset))
return nullptr;
/* The apparent address from which we are reading memory. Note that in
some cases GDB actually disassembles instructions from a buffer, so
we might not actually be reading this information directly from the
inferior memory. This is all hidden behind the read_memory_func API
within the disassemble_info structure. */
CORE_ADDR address = obj->address + offset;
/* Setup a buffer to hold the result. */
buffer.reset ((gdb_byte *) xmalloc (length));
/* Read content into BUFFER. If the read fails then raise a memory
error, otherwise, convert BUFFER to a Python memory buffer, and return
it to the user. */
disassemble_info *info = obj->gdb_info;
if (info->read_memory_func ((bfd_vma) address, buffer.get (),
(unsigned int) length, info) != 0)
{
disasmpy_set_memory_error_for_address (address);
return nullptr;
}
return gdbpy_buffer_to_membuf (std::move (buffer), address, length);
}
/* Implement DisassembleInfo.address attribute, return the address at which
GDB would like an instruction disassembled. */
static PyObject *
disasmpy_info_address (PyObject *self, void *closure)
{
disasm_info_object *obj = (disasm_info_object *) self;
DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
return gdb_py_object_from_longest (obj->address).release ();
}
/* Implement DisassembleInfo.architecture attribute. Return the
gdb.Architecture in which we are disassembling. */
static PyObject *
disasmpy_info_architecture (PyObject *self, void *closure)
{
disasm_info_object *obj = (disasm_info_object *) self;
DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
return gdbarch_to_arch_object (obj->gdbarch);
}
/* Implement DisassembleInfo.progspace attribute. Return the
gdb.Progspace in which we are disassembling. */
static PyObject *
disasmpy_info_progspace (PyObject *self, void *closure)
{
disasm_info_object *obj = (disasm_info_object *) self;
DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
return pspace_to_pspace_object (obj->program_space).release ();
}
/* Helper function called when the libopcodes disassembler produces some
output. FORMAT and ARGS are used to create a string which GDB will
display using STYLE. The string is either added as a new
DisassemblerTextPart to the list of parts being built in the current
gdbpy_disassembler object (accessed through DIS_INFO). Or, if the last
part in the gdbpy_disassembler is a text part in the same STYLE, then
the new string is appended to the previous part.
The merging behavior make the Python API a little more user friendly,
some disassemblers produce their output character at a time, there's no
particular reason for this, it's just how they are implemented. By
merging parts with the same style we make it easier for the user to
analyse the disassembler output. */
int
gdbpy_disassembler::vfprintf_styled_func (void *dis_info,
enum disassembler_style style,
const char *format,
va_list args) noexcept
{
gdb_disassemble_info *di = (gdb_disassemble_info *) dis_info;
gdbpy_disassembler *dis
= gdb::checked_static_cast<gdbpy_disassembler *> (di);
if (!dis->m_parts.empty ()
&& Py_TYPE (dis->m_parts.back ().get ()) == &disasm_text_part_object_type
&& (((disasm_text_part_object *) dis->m_parts.back ().get ())->style
== style))
{
std::string *string
= ((disasm_text_part_object *) dis->m_parts.back ().get ())->string;
string_vappendf (*string, format, args);
}
else
{
std::string str = string_vprintf (format, args);
if (str.size () > 0)
{
gdbpy_ref<> text_part
= make_disasm_text_part (std::move (str), style);
dis->m_parts.emplace_back (std::move (text_part));
}
}
/* Something non -ve. */
return 0;
}
/* Disassembler callback for architectures where libopcodes doesn't
created styled output. In these cases we format all the output using
the (default) text style. */
int
gdbpy_disassembler::fprintf_func (void *dis_info,
const char *format, ...) noexcept
{
va_list args;
va_start (args, format);
vfprintf_styled_func (dis_info, dis_style_text, format, args);
va_end (args);
/* Something non -ve. */
return 0;
}
/* Disassembler callback for architectures where libopcodes does create
styled output. Just creates a new text part with the given STYLE. */
int
gdbpy_disassembler::fprintf_styled_func (void *dis_info,
enum disassembler_style style,
const char *format, ...) noexcept
{
va_list args;
va_start (args, format);
vfprintf_styled_func (dis_info, style, format, args);
va_end (args);
/* Something non -ve. */
return 0;
}
/* This implements the disassemble_info read_memory_func callback and is
called from the libopcodes disassembler when the disassembler wants to
read memory.
From the INFO argument we can find the gdbpy_disassembler object for
which we are disassembling, and from that object we can find the
DisassembleInfo for the current disassembly call.
This function reads the instruction bytes by calling the read_memory
method on the DisassembleInfo object. This method might have been
overridden by user code.
Read LEN bytes from MEMADDR and place them into BUFF. Return 0 on
success (in which case BUFF has been filled), or -1 on error, in which
case the contents of BUFF are undefined. */
int
gdbpy_disassembler::read_memory_func (bfd_vma memaddr, gdb_byte *buff,
unsigned int len,
struct disassemble_info *info) noexcept
{
gdbpy_disassembler *dis
= static_cast<gdbpy_disassembler *> (info->application_data);
disasm_info_object *obj = dis->py_disasm_info ();
/* If a previous read attempt resulted in an exception, then we don't
allow any further reads to succeed. We only do this check for the
read_memory_func as this is the only one the user can hook into,
thus, this check prevents us calling back into user code if a
previous call has already thrown an error. */
if (dis->has_stored_exception ())
return -1;
/* The DisassembleInfo.read_memory method expects an offset from the
address stored within the DisassembleInfo object; calculate that
offset here. */
gdb_py_longest offset
= (gdb_py_longest) memaddr - (gdb_py_longest) obj->address;
/* Now call the DisassembleInfo.read_memory method. This might have been
overridden by the user. */
gdbpy_ref<> result_obj = gdbpy_call_method ((PyObject *) obj, "read_memory",
len, offset);
/* Handle any exceptions. */
if (result_obj == nullptr)
{
/* If we got a gdb.MemoryError then we ignore this and just report
that the read failed to the caller. The caller is then
responsible for calling the memory_error_func if it wants to.
Remember, the disassembler might just be probing to see if these
bytes can be read, if we automatically call the memory error
function, we can end up registering an error prematurely. */
if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
{
PyErr_Clear ();
return -1;
}
/* For any other exception type we capture the value of the Python
exception and throw it, this will then be caught in
disasmpy_builtin_disassemble, at which point the exception will be
restored. */
dis->store_exception (gdbpy_err_fetch ());
return -1;
}
/* Convert the result to a buffer. */
Py_buffer py_buff;
if (!PyObject_CheckBuffer (result_obj.get ())
|| PyObject_GetBuffer (result_obj.get(), &py_buff, PyBUF_CONTIG_RO) < 0)
{
PyErr_Format (PyExc_TypeError,
_("Result from read_memory is not a buffer"));
dis->store_exception (gdbpy_err_fetch ());
return -1;
}
/* Wrap PY_BUFF so that it is cleaned up correctly at the end of this
scope. */
Py_buffer_up buffer_up (&py_buff);
/* Validate that the buffer is the correct length. */
if (py_buff.len != len)
{
PyErr_Format (PyExc_ValueError,
_("Buffer returned from read_memory is sized %d instead of the expected %d"),
py_buff.len, len);
dis->store_exception (gdbpy_err_fetch ());
return -1;
}
/* Copy the data out of the Python buffer and return success. */
const gdb_byte *buffer = (const gdb_byte *) py_buff.buf;
memcpy (buff, buffer, len);
return 0;
}
/* Implement __str__ for the DisassemblerResult type. */
static PyObject *
disasmpy_result_str (PyObject *self)
{
disasm_result_object *obj = (disasm_result_object *) self;
/* These conditions are all enforced when the DisassemblerResult object
is created. */
gdb_assert (obj->parts != nullptr);
gdb_assert (obj->parts->size () > 0);
gdb_assert (obj->length > 0);
std::string str;
try
{
str = disasmpy_parts_list_to_string (*obj->parts);
}
catch (const gdb_exception &except)
{
return gdbpy_handle_gdb_exception (nullptr, except);
}
return PyUnicode_Decode (str.c_str (), str.size (),
host_charset (), nullptr);
}
/* Implement DisassemblerResult.length attribute, return the length of the
disassembled instruction. */
static PyObject *
disasmpy_result_length (PyObject *self, void *closure)
{
disasm_result_object *obj = (disasm_result_object *) self;
return gdb_py_object_from_longest (obj->length).release ();
}
/* Implement DisassemblerResult.string attribute, return the content string
of the disassembled instruction. */
static PyObject *
disasmpy_result_string (PyObject *self, void *closure)
{
return disasmpy_result_str (self);
}
/* Implement DisassemblerResult.parts method. Returns a list of all the
parts that make up this result. There should always be at least one
part, so the returned list should never be empty. */
static PyObject *
disasmpy_result_parts (PyObject *self, void *closure)
{
disasm_result_object *obj = (disasm_result_object *) self;
/* These conditions are all enforced when the DisassemblerResult object
is created. */
gdb_assert (obj->parts != nullptr);
gdb_assert (obj->parts->size () > 0);
gdb_assert (obj->length > 0);
gdbpy_ref<> result_list (PyList_New (obj->parts->size ()));
if (result_list == nullptr)
return nullptr;
Py_ssize_t idx = 0;
for (auto p : *obj->parts)
{
gdbpy_ref<> item = gdbpy_ref<>::new_reference (p.get ());
PyList_SET_ITEM (result_list.get (), idx, item.release ());
++idx;
}
/* This should follow naturally from the obj->parts list being
non-empty. */
gdb_assert (PyList_Size (result_list.get()) > 0);
return result_list.release ();
}
/* Implement DisassemblerResult.__init__. Takes two arguments, an
integer, the length in bytes of the disassembled instruction, and a
string, the disassembled content of the instruction. */
static int
disasmpy_result_init (PyObject *self, PyObject *args, PyObject *kwargs)
{
static const char *keywords[] = { "length", "string", "parts", NULL };
int length;
const char *string = nullptr;
PyObject *parts_list = nullptr;
if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "i|zO", keywords,