Skip to content

Latest commit

 

History

History
96 lines (64 loc) · 2.35 KB

README.md

File metadata and controls

96 lines (64 loc) · 2.35 KB

SPS - Stochastic Polyak Step-size [paper]

Fast convergence with SPS optimizer. The first efficient stochastic variant of the classical Polyak step-size for SGD

1. Install requirements

Install the sps optimizer.

pip install git+https://github.com/IssamLaradji/sps.git

Install the Haven library for managing the experiments.

pip install -r requirements.txt

2. Usage

Use Sps in your code by adding the following script.

import sps
opt = sps.Sps(model.parameters())

for epoch in range(100):
    opt.zero_grad()
    loss = torch.nn.MSELoss() (model(X), Y)
    loss.backward()

    opt.step(loss=loss)

3. Experiments

3.1 MNIST

python trainval.py -e mnist -sb ../results -r 1

where -e is the experiment group, -sb is the result directory.

3.2 Kernels

python trainval.py -e kernel -sb ../results -r 1

4. Results

4.1 Launch Jupyter by running the following on terminal,

jupyter nbextension enable --py widgetsnbextension --sys-prefix
jupyter notebook

4.2 On a Jupyter cell, run the following script,

from haven import haven_jupyter as hj
from haven import haven_results as hr
from haven import haven_utils as hu

# path to where the experiments got saved
savedir_base = '../results'

# filter exps
filterby_list = [{'dataset':'cifar10', 'opt':{'c':0.2}}, 
                    {'dataset':'cifar10', 'opt':{'name':'adam'}}]

# get experiments
rm = hr.ResultManager(savedir_base=savedir_base, 
                      filterby_list=filterby_list, 
                      verbose=0)
# dashboard variables
legend_list = ['opt.name']
title_list = ['dataset', 'model']
y_metrics = ['train_loss', 'val_acc']

# launch dashboard
hj.get_dashboard(rm, vars(), wide_display=True)

alt text

Citation

@article{loizou2020stochastic,
  title={Stochastic polyak step-size for SGD: An adaptive learning rate for fast convergence},
  author={Loizou, Nicolas and Vaswani, Sharan and Laradji, Issam and Lacoste-Julien, Simon},
  journal={arXiv preprint arXiv:2002.10542},
  year={2020}
}

It is a collaborative work between labs at MILA, Element AI, and UBC.

Credits