-
Notifications
You must be signed in to change notification settings - Fork 795
/
Copy pathtestSubgraphPreconditioner.cpp
240 lines (198 loc) · 8.02 KB
/
testSubgraphPreconditioner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSubgraphConditioner.cpp
* @brief Unit tests for SubgraphPreconditioner
* @author Frank Dellaert
**/
#include <tests/smallExample.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianEliminationTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/SubgraphPreconditioner.h>
#include <gtsam/linear/iterative.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/symbolic/SymbolicFactorGraph.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/list.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/tuple/tuple.hpp>
using namespace boost::assign;
#include <fstream>
using namespace std;
using namespace gtsam;
using namespace example;
// define keys
// Create key for simulated planar graph
Symbol key(int x, int y) { return symbol_shorthand::X(1000 * x + y); }
/* ************************************************************************* */
TEST(SubgraphPreconditioner, planarOrdering) {
// Check canonical ordering
Ordering expected, ordering = planarOrdering(3);
expected +=
key(3, 3), key(2, 3), key(1, 3),
key(3, 2), key(2, 2), key(1, 2),
key(3, 1), key(2, 1), key(1, 1);
EXPECT(assert_equal(expected, ordering));
}
/* ************************************************************************* */
/** unnormalized error */
static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
double total_error = 0.;
for (const GaussianFactor::shared_ptr& factor : fg)
total_error += factor->error(x);
return total_error;
}
/* ************************************************************************* */
TEST(SubgraphPreconditioner, planarGraph) {
// Check planar graph construction
GaussianFactorGraph A;
VectorValues xtrue;
boost::tie(A, xtrue) = planarGraph(3);
LONGS_EQUAL(13, A.size());
LONGS_EQUAL(9, xtrue.size());
DOUBLES_EQUAL(0, error(A, xtrue), 1e-9); // check zero error for xtrue
// Check that xtrue is optimal
GaussianBayesNet R1 = *A.eliminateSequential();
VectorValues actual = R1.optimize();
EXPECT(assert_equal(xtrue, actual));
}
/* ************************************************************************* */
TEST(SubgraphPreconditioner, splitOffPlanarTree) {
// Build a planar graph
GaussianFactorGraph A;
VectorValues xtrue;
boost::tie(A, xtrue) = planarGraph(3);
// Get the spanning tree and constraints, and check their sizes
GaussianFactorGraph T, C;
boost::tie(T, C) = splitOffPlanarTree(3, A);
LONGS_EQUAL(9, T.size());
LONGS_EQUAL(4, C.size());
// Check that the tree can be solved to give the ground xtrue
GaussianBayesNet R1 = *T.eliminateSequential();
VectorValues xbar = R1.optimize();
EXPECT(assert_equal(xtrue, xbar));
}
/* ************************************************************************* */
TEST(SubgraphPreconditioner, system) {
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree and remaining graph
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
// Eliminate the spanning tree to build a prior
const Ordering ord = planarOrdering(N);
auto Rc1 = *Ab1.eliminateSequential(ord); // R1*x-c1
VectorValues xbar = Rc1.optimize(); // xbar = inv(R1)*c1
// Create Subgraph-preconditioned system
const SubgraphPreconditioner system(Ab2, Rc1, xbar);
// Get corresponding matrices for tests. Add dummy factors to Ab2 to make
// sure it works with the ordering.
Ordering ordering = Rc1.ordering(); // not ord in general!
Ab2.add(key(1, 1), Z_2x2, Z_2x1);
Ab2.add(key(1, 2), Z_2x2, Z_2x1);
Ab2.add(key(1, 3), Z_2x2, Z_2x1);
Matrix A, A1, A2;
Vector b, b1, b2;
std::tie(A, b) = Ab.jacobian(ordering);
std::tie(A1, b1) = Ab1.jacobian(ordering);
std::tie(A2, b2) = Ab2.jacobian(ordering);
Matrix R1 = Rc1.matrix(ordering).first;
Matrix Abar(13 * 2, 9 * 2);
Abar.topRows(9 * 2) = Matrix::Identity(9 * 2, 9 * 2);
Abar.bottomRows(8) = A2.topRows(8) * R1.inverse();
// Helper function to vectorize in correct order, which is the order in which
// we eliminated the spanning tree.
auto vec = [ordering](const VectorValues& x) { return x.vector(ordering); };
// Set up y0 as all zeros
const VectorValues y0 = system.zero();
// y1 = perturbed y0
VectorValues y1 = system.zero();
y1[key(3, 3)] = Vector2(1.0, -1.0);
// Check backSubstituteTranspose works with R1
VectorValues actual = Rc1.backSubstituteTranspose(y1);
Vector expected = R1.transpose().inverse() * vec(y1);
EXPECT(assert_equal(expected, vec(actual)));
// Check corresponding x values
// for y = 0, we get xbar:
EXPECT(assert_equal(xbar, system.x(y0)));
// for non-zero y, answer is x = xbar + inv(R1)*y
const Vector expected_x1 = vec(xbar) + R1.inverse() * vec(y1);
const VectorValues x1 = system.x(y1);
EXPECT(assert_equal(expected_x1, vec(x1)));
// Check errors
DOUBLES_EQUAL(0, error(Ab, xbar), 1e-9);
DOUBLES_EQUAL(0, system.error(y0), 1e-9);
DOUBLES_EQUAL(2, error(Ab, x1), 1e-9);
DOUBLES_EQUAL(2, system.error(y1), 1e-9);
// Check that transposeMultiplyAdd <=> y += alpha * Abar' * e
// We check for e1 =[1;0] and e2=[0;1] corresponding to T and C
const double alpha = 0.5;
Errors e1, e2;
for (size_t i = 0; i < 13; i++) {
e1 += i < 9 ? Vector2(1, 1) : Vector2(0, 0);
e2 += i >= 9 ? Vector2(1, 1) : Vector2(0, 0);
}
Vector ee1(13 * 2), ee2(13 * 2);
ee1 << Vector::Ones(9 * 2), Vector::Zero(4 * 2);
ee2 << Vector::Zero(9 * 2), Vector::Ones(4 * 2);
// Check transposeMultiplyAdd for e1
VectorValues y = system.zero();
system.transposeMultiplyAdd(alpha, e1, y);
Vector expected_y = alpha * Abar.transpose() * ee1;
EXPECT(assert_equal(expected_y, vec(y)));
// Check transposeMultiplyAdd for e2
y = system.zero();
system.transposeMultiplyAdd(alpha, e2, y);
expected_y = alpha * Abar.transpose() * ee2;
EXPECT(assert_equal(expected_y, vec(y)));
// Test gradient in y
auto g = system.gradient(y0);
Vector expected_g = Vector::Zero(18);
EXPECT(assert_equal(expected_g, vec(g)));
}
/* ************************************************************************* */
TEST(SubgraphPreconditioner, conjugateGradients) {
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree
GaussianFactorGraph Ab1, Ab2; // A1*x-b1 and A2*x-b2
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
// Eliminate the spanning tree to build a prior
GaussianBayesNet Rc1 = *Ab1.eliminateSequential(); // R1*x-c1
VectorValues xbar = Rc1.optimize(); // xbar = inv(R1)*c1
// Create Subgraph-preconditioned system
SubgraphPreconditioner system(Ab2, Rc1, xbar);
// Create zero config y0 and perturbed config y1
VectorValues y0 = VectorValues::Zero(xbar);
VectorValues y1 = y0;
y1[key(2, 2)] = Vector2(1.0, -1.0);
VectorValues x1 = system.x(y1);
// Solve for the remaining constraints using PCG
ConjugateGradientParameters parameters;
VectorValues actual = conjugateGradients<SubgraphPreconditioner,
VectorValues, Errors>(system, y1, parameters);
EXPECT(assert_equal(y0,actual));
// Compare with non preconditioned version:
VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
EXPECT(assert_equal(xtrue, actual2, 1e-4));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */