A mathematical finance Python library
https://pypi.org/project/QFin/
pip install qfin
Theoretical options pricing for non-dividend paying stocks is available via the BlackScholesCall and BlackScholesPut classes.
from qfin.options import BlackScholesCall
from qfin.options import BlackScholesPut
# 100 - initial underlying asset price
# .3 - asset underlying volatility
# 100 - option strike price
# 1 - time to maturity (annum)
# .01 - risk free rate of interest
euro_call = BlackScholesCall(100, .3, 100, 1, .01)
euro_put = BlackScholesPut(100, .3, 100, 1, .01)
print('Call price: ', euro_call.price)
print('Put price: ', euro_put.price)
Call price: 12.361726191532611
Put price: 11.366709566449416
First-order and some second-order partial derivatives of the Black-Scholes pricing model are available.
First-order partial derivative with respect to the underlying asset price.
print('Call delta: ', euro_call.delta)
print('Put delta: ', euro_put.delta)
Call delta: 0.5596176923702425
Put delta: -0.4403823076297575
Second-order partial derivative with respect to the underlying asset price.
print('Call gamma: ', euro_call.gamma)
print('Put gamma: ', euro_put.gamma)
Call gamma: 0.018653923079008084
Put gamma: 0.018653923079008084
First-order partial derivative with respect to the underlying asset volatility.
print('Call vega: ', euro_call.vega)
print('Put vega: ', euro_put.vega)
Call vega: 39.447933090788894
Put vega: 39.447933090788894
First-order partial derivative with respect to the time to maturity.
print('Call theta: ', euro_call.theta)
print('Put theta: ', euro_put.theta)
Call theta: -6.35319039407325
Put theta: -5.363140560324083
Simulating asset paths is available using common stochastic processes.
Standard model for implementing geometric Brownian motion.
from qfin.simulations import GeometricBrownianMotion
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
gbm = GeometricBrownianMotion(100, 0, .3, 1/52, 1)
print(gbm.simulated_path)
[107.0025048205179, 104.82320056538235, 102.53591127422398, 100.20213816642244, 102.04283245358256, 97.75115579923988, 95.19613943526382, 96.9876745495834, 97.46055174410736, 103.93032659279226, 107.36331603194304, 108.95104494118915, 112.42823319947456, 109.06981862825943, 109.10124426285238, 114.71465058375804, 120.00234814086286, 116.91730159923688, 118.67452601825876, 117.89233466917202, 118.93541257993591, 124.36106523035058, 121.26088015675688, 120.53641952983601, 113.73881043255554, 114.91724168548876, 112.94192281337791, 113.55773877160591, 107.49491796151044, 108.0715118831013, 113.01893111071472, 110.39204535739405, 108.63917240906524, 105.8520395233433, 116.2907247951675, 114.07340779267213, 111.06821275009212, 109.65530380775077, 105.78971667172465, 97.75385009989282, 97.84501925249452, 101.90695475825825, 106.0493833583297, 105.48266575656817, 106.62375752876223, 112.39829297429974, 111.22855058562658, 109.89796974828265, 112.78068777325248, 117.80550869036715, 118.4680557054793, 114.33258212280838]
Stochastic volatility model based on Heston's paper (1993).
from qfin.simulations import StochasticVarianceModel
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .01 - risk free rate of interest
# .05 - continuous dividend
# 2 - rate in which variance reverts to the implied long run variance
# .25 - implied long run variance as time tends to infinity
# -.7 - correlation of motion generated
# .3 - Variance's volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
svm = StochasticVarianceModel(100, 0, .01, .05, 2, .25, -.7, .3, .09, 1/52, 1)
print(svm.simulated_path)
[98.21311553503577, 100.4491317019877, 89.78475515902066, 89.0169762497475, 90.70468848525869, 86.00821802256675, 80.74984494892573, 89.05033807013137, 88.51410029337134, 78.69736798230346, 81.90948751054125, 83.02502248913251, 83.46375102829755, 85.39018282900138, 78.97401642238059, 78.93505221741903, 81.33268688455111, 85.12156706038515, 79.6351983987908, 84.2375291273571, 82.80206517176038, 89.63659376223292, 89.22438477640516, 89.13899271995662, 94.60123239511816, 91.200165507022, 96.0578905115345, 87.45399399599378, 97.908745925816, 97.93068975065052, 103.32091104292813, 110.58066464778392, 105.21520242908348, 99.4655106985056, 106.74882010453683, 112.0058519886151, 110.20930861932342, 105.11835510815085, 113.59852610881678, 107.13315204738092, 108.36549026977205, 113.49809943785571, 122.67910031073885, 137.70966794451425, 146.13877267735612, 132.9973784430374, 129.75750117504984, 128.7467891695649, 127.13115959080305, 130.47967713110302, 129.84273088908265, 129.6411527208744]
Simulation pricing for exotic options is available under the assumptions associated with the respective stochastic processes. Geometric Brownian motion is the base underlying stochastic process used in each Monte Carlo simulation. However, should additional parameters be provided, the appropriate stochastic process will be used to generate each sample path.
from qfin.simulations import MonteCarloCall
from qfin.simulations import MonteCarloPut
# 100 - strike price
# 1000 - number of simulated price paths
# .01 - risk free rate of interest
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
call_option = MonteCarloCall(100, 1000, .01, 100, 0, .3, 1/52, 1)
# These additional parameters will generate a Monte Carlo price based on a stochastic volatility process
# 2 - rate in which variance reverts to the implied long run variance
# .25 - implied long run variance as time tends to infinity
# -.5 - correlation of motion generated
# .02 - continuous dividend
# .3 - Variance's volatility
put_option = MonteCarloPut(100, 1000, .01, 100, 0, .3, 1/52, 1, 2, .25, -.5, .02, .3)
print(call_option.price)
print(put_option.price)
12.73812121792851
23.195814963576286
from qfin.simulations import MonteCarloBinaryCall
from qfin.simulations import MonteCarloBinaryPut
# 100 - strike price
# 50 - binary option payout
# 1000 - number of simulated price paths
# .01 - risk free rate of interest
# 100 - initial underlying asset price
# 0 - underlying asset drift (mu)
# .3 - underlying asset volatility
# 1/52 - time steps (dt)
# 1 - time to maturity (annum)
binary_call = MonteCarloBinaryCall(100, 50, 1000, .01, 100, 0, .3, 1/52, 1)
binary_put = MonteCarloBinaryPut(100, 50, 1000, .01, 100, 0, .3, 1/52, 1)
print(binary_call.price)
print(binary_put.price)
22.42462873441866
27.869902820039087