forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_data_collator.py
196 lines (165 loc) · 9.09 KB
/
test_data_collator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import unittest
from transformers import AutoTokenizer, is_torch_available
from transformers.testing_utils import require_torch, slow
if is_torch_available():
import torch
from transformers import (
DataCollatorForLanguageModeling,
DataCollatorForNextSentencePrediction,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSOP,
GlueDataset,
GlueDataTrainingArguments,
LineByLineTextDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
default_data_collator,
)
PATH_SAMPLE_TEXT = "./tests/fixtures/sample_text.txt"
PATH_SAMPLE_TEXT_DIR = "./tests/fixtures/tests_samples/wiki_text"
@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
def test_default_with_dict(self):
features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
batch = default_data_collator(features)
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
self.assertEqual(batch["labels"].dtype, torch.long)
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))
# With label_ids
features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
batch = default_data_collator(features)
self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8)))
self.assertEqual(batch["labels"].dtype, torch.long)
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))
# Features can already be tensors
features = [{"label": i, "inputs": torch.randint(10, [10])} for i in range(8)]
batch = default_data_collator(features)
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
self.assertEqual(batch["labels"].dtype, torch.long)
self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))
# Labels can already be tensors
features = [{"label": torch.tensor(i), "inputs": torch.randint(10, [10])} for i in range(8)]
batch = default_data_collator(features)
self.assertEqual(batch["labels"].dtype, torch.long)
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
self.assertEqual(batch["labels"].dtype, torch.long)
self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))
def test_default_with_no_labels(self):
features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
batch = default_data_collator(features)
self.assertTrue("labels" not in batch)
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))
# With label_ids
features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
batch = default_data_collator(features)
self.assertTrue("labels" not in batch)
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))
@slow
def test_default_classification(self):
MODEL_ID = "bert-base-cased-finetuned-mrpc"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
data_args = GlueDataTrainingArguments(
task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
)
dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
data_collator = default_data_collator
batch = data_collator(dataset.features)
self.assertEqual(batch["labels"].dtype, torch.long)
@slow
def test_default_regression(self):
MODEL_ID = "distilroberta-base"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
data_args = GlueDataTrainingArguments(
task_name="sts-b", data_dir="./tests/fixtures/tests_samples/STS-B", overwrite_cache=True
)
dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
data_collator = default_data_collator
batch = data_collator(dataset.features)
self.assertEqual(batch["labels"].dtype, torch.float)
@slow
def test_lm_tokenizer_without_padding(self):
tokenizer = AutoTokenizer.from_pretrained("gpt2")
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
# ^ causal lm
dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
examples = [dataset[i] for i in range(len(dataset))]
with self.assertRaises(ValueError):
# Expect error due to padding token missing on gpt2:
data_collator(examples)
dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
examples = [dataset[i] for i in range(len(dataset))]
batch = data_collator(examples)
self.assertIsInstance(batch, dict)
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))
@slow
def test_lm_tokenizer_with_padding(self):
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
data_collator = DataCollatorForLanguageModeling(tokenizer)
# ^ masked lm
dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
examples = [dataset[i] for i in range(len(dataset))]
batch = data_collator(examples)
self.assertIsInstance(batch, dict)
self.assertEqual(batch["input_ids"].shape, torch.Size((31, 107)))
self.assertEqual(batch["labels"].shape, torch.Size((31, 107)))
dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
examples = [dataset[i] for i in range(len(dataset))]
batch = data_collator(examples)
self.assertIsInstance(batch, dict)
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))
@slow
def test_plm(self):
tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
data_collator = DataCollatorForPermutationLanguageModeling(tokenizer)
# ^ permutation lm
dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
examples = [dataset[i] for i in range(len(dataset))]
batch = data_collator(examples)
self.assertIsInstance(batch, dict)
self.assertEqual(batch["input_ids"].shape, torch.Size((31, 112)))
self.assertEqual(batch["perm_mask"].shape, torch.Size((31, 112, 112)))
self.assertEqual(batch["target_mapping"].shape, torch.Size((31, 112, 112)))
self.assertEqual(batch["labels"].shape, torch.Size((31, 112)))
dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
examples = [dataset[i] for i in range(len(dataset))]
batch = data_collator(examples)
self.assertIsInstance(batch, dict)
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 512, 512)))
self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 512, 512)))
self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))
example = [torch.randint(5, [5])]
with self.assertRaises(ValueError):
# Expect error due to odd sequence length
data_collator(example)
@slow
def test_nsp(self):
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
data_collator = DataCollatorForNextSentencePrediction(tokenizer)
dataset = TextDatasetForNextSentencePrediction(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
examples = [dataset[i] for i in range(len(dataset))]
batch = data_collator(examples)
self.assertIsInstance(batch, dict)
# Since there are randomly generated false samples, the total number of samples is not fixed.
total_samples = batch["input_ids"].shape[0]
self.assertEqual(batch["input_ids"].shape, torch.Size((total_samples, 512)))
self.assertEqual(batch["token_type_ids"].shape, torch.Size((total_samples, 512)))
self.assertEqual(batch["masked_lm_labels"].shape, torch.Size((total_samples, 512)))
self.assertEqual(batch["next_sentence_label"].shape, torch.Size((total_samples,)))
@slow
def test_sop(self):
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
data_collator = DataCollatorForSOP(tokenizer)
dataset = LineByLineWithSOPTextDataset(tokenizer, file_dir=PATH_SAMPLE_TEXT_DIR, block_size=512)
examples = [dataset[i] for i in range(len(dataset))]
batch = data_collator(examples)
self.assertIsInstance(batch, dict)
# Since there are randomly generated false samples, the total number of samples is not fixed.
total_samples = batch["input_ids"].shape[0]
self.assertEqual(batch["input_ids"].shape, torch.Size((total_samples, 512)))
self.assertEqual(batch["token_type_ids"].shape, torch.Size((total_samples, 512)))
self.assertEqual(batch["labels"].shape, torch.Size((total_samples, 512)))
self.assertEqual(batch["sentence_order_label"].shape, torch.Size((total_samples,)))