-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandomcpp.hpp
264 lines (225 loc) · 8.39 KB
/
randomcpp.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#pragma once
#include <algorithm> // std::random_shuffle
#include <vector>
#include <random>
#include <stdexcept>
#include <set>
#include <iterator> // std::distance
#include <array>
namespace randomcpp {
// Bookkeeping functions:
/*
* Initialize the random number generator.
* If a is omitted or None, the current system time is used.
* If a is an int, it is used directly.
*/
void seed();
void seed(unsigned a);
/*
* Reseed the random generator with the stored seed.
*/
void reset();
// Functions for integers:
/*
* Return a randomly selected element from range(start, stop, step).
*/
int randrange(int stop);
int randrange(int start, int stop, int step=1);
/*
* Return a random integer N such that a <= N <= b. Alias for randrange(a, b+1).
*/
int randint(int a, int b);
// Functions for sequences:
/*
* Return a random element from the non-empty sequence seq. If seq is empty, raises logic_error.
*/
template <typename TContainer>
typename TContainer::value_type choice(TContainer const & container) {
auto begin(container.begin());
auto size(std::distance(begin, container.end()));
if (!size) {
throw std::logic_error("Cannot choose from an empty sequence");
}
auto rand_index(randrange(size));
std::advance(begin, rand_index);
return *begin;
}
/*
* Return a random element from the non-empty sequence seq. If seq is empty, raises logic_error.
*/
template <typename T, std::size_t N>
T choice(T const (&array)[N]) {
if (!N) {
throw std::logic_error("Cannot choose from an empty sequence");
}
auto rand_index(randrange(N));
return array[rand_index];
}
/*
* Shuffle the sequence x in place.
* Note that for even rather small len(x), the total number of permutations of x is larger than the period of most random number generators;
* this implies that most permutations of a long sequence can never be generated.
*/
template <typename TContainer>
void shuffle(TContainer * container) {
std::random_shuffle(container->begin(), container->end());
}
/*
* Shuffle the sequence x in place.
* Note that for even rather small len(x), the total number of permutations of x is larger than the period of most random number generators;
* this implies that most permutations of a long sequence can never be generated.
*/
template <typename T, std::size_t N>
void shuffle(T (*array)[N]) {
for (unsigned i= N-1; i > 0; i--) {
unsigned j = randrange(i + 1);
std::swap((*array)[i], (*array)[j]);
}
}
namespace _detail {
template<typename T>
void sample_dumb_array(T const* population, T* result, std::size_t n, std::size_t k) {
std::set<unsigned> selected;
for (unsigned i = 0; i < k; i++) {
unsigned j = randrange(n);
while (!selected.insert(j).second) {
j = randrange(n);
}
*(result + i) = *(population + j);
}
}
template<typename T>
struct has_resize {
template<typename U, void (U::*)(std::size_t)>
struct resize_signature {};
template<typename U>
static char Test(resize_signature<U, &U::resize>*);
template<typename U>
static int Test(...);
static const bool value = sizeof(Test<T>(0)) == sizeof(char);
};
} // namespace _detail
/*
* Return a k length list of unique elements chosen from the population sequence or set. Used for random sampling without replacement.
* Returns a new list containing elements from the population while leaving the original population unchanged.
* The resulting list is in selection order so that all sub-slices will also be valid random samples.
* This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).
*/
template <typename TPopulation,
typename std::enable_if<_detail::has_resize<TPopulation>::value, int>::type = 0>
TPopulation sample(TPopulation const & population, std::size_t k) {
std::set<unsigned> selected;
TPopulation result;
result.resize(k);
auto size(std::distance(population.begin(), population.end()));
auto result_itr(result.begin());
auto population_itr(population.begin());
for (unsigned i=0; i < k; i++) {
unsigned j = randrange(size);
while (!selected.insert(j).second) {
j = randrange(size);
}
population_itr = population.begin();
std::advance(population_itr, j);
*result_itr = *population_itr;
std::advance(result_itr, 1);
}
return std::move(result);
}
template <typename TPopulation,
typename std::enable_if<!_detail::has_resize<TPopulation>::value, int>::type = 0>
TPopulation sample(TPopulation const & population, std::size_t k) {
std::set<unsigned> selected;
TPopulation result;
auto size(std::distance(population.begin(), population.end()));
auto result_itr(result.begin());
auto population_itr(population.begin());
for (unsigned i=0; i < k; i++) {
unsigned j = randrange(size);
while (!selected.insert(j).second) {
j = randrange(size);
}
population_itr = population.begin();
std::advance(population_itr, j);
result.insert(*population_itr);
}
return std::move(result);
}
template <typename T, std::size_t N, std::size_t K>
void sample(T const (&population)[N], T (*result)[K]) {
_detail::sample_dumb_array<T>(&population[0], &(*result)[0], N, K);
}
template <typename T, std::size_t N, std::size_t K>
void sample(std::array<T, N> const & population, std::array<T, K> * result) {
_detail::sample_dumb_array<T>(population.data(), result->data(), N, K);
}
// The following functions generate specific real-valued distributions.
// Function parameters are named after the corresponding variables in the distribution’s equation,
// as used in common mathematical practice; most of these equations can be found in any statistics text.
/*
* Return the next random floating point number in the range [0.0, 1.0).
*/
float random();
/*
* Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for b < a.
* The end-point value b may or may not be included in the range depending on floating-point rounding in the equation a + (b-a) * random().
*/
float uniform(float a, float b);
/*
* Return a random floating point number N such that low <= N <= high and with the specified mode between those bounds.
* The low and high bounds default to zero and one.
* The mode argument defaults to the midpoint between the bounds, giving a symmetric distribution.
*/
float triangular(float low = 0.0, float high = 1.0, float mode = 0.5);
/*
* Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range between 0 and 1.
*/
float betavariate(float alpha, float beta);
/*
* Exponential distribution. lambda is 1.0 divided by the desired mean. It should be nonzero.
* Returned values range from 0 to positive infinity if lambda is positive,
* and from negative infinity to 0 if lambda is negative.
*/
float expovariate(float lambda);
/*
* Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta > 0.
* The probability distribution function is:
*
* x ** (alpha - 1) * math.exp(-x / beta)
* pdf(x) = --------------------------------------
* math.gamma(alpha) * beta ** alpha
*/
float gammavariate(float alpha, float beta);
/*
* Gaussian distribution. mu is the mean, and sigma is the standard deviation.
* This is slightly faster than the normalvariate() function defined below.
*/
float gauss(float mu, float sigma);
/*
* Normal distribution. mu is the mean, and sigma is the standard deviation.
*/
float normalvariate(float mu, float sigma);
/*
* Circular data distribution. mu is the mean angle, expressed in radians between 0 and 2*pi,
* and kappa is the concentration parameter, which must be greater than or equal to zero.
* If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi.
*/
float vonmisesvariate(float mu, float kappa);
/*
* Pareto distribution. alpha is the shape parameter.
*/
float paretovariate(float alpha);
/*
* Weibull distribution. alpha is the scale parameter and beta is the shape parameter.
*/
float weibullvariate(float alpha, float beta);
// Other functions
/*
* Return value has a <probability_> chance of being true
*/
bool probability(float probability_);
/*
* Return a k length list of unique (or not) elements chosen from the range.
*/
std::vector<int> sample(int a, int b, unsigned k, bool unique = false);
} // namespace randomcpp