-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom.cpp
244 lines (208 loc) · 5.67 KB
/
random.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include <randomcpp.hpp>
#include <algorithm> // std::find
#include <ctime> // std::time
#include <cmath>
namespace randomcpp {
static unsigned seed_value = 0;
static std::random_device rd;
static float const SG_MAGICCONST = 1.0f + std::log(4.5f);
static float const NV_MAGICCONST = static_cast<float>(4.0f * std::exp(-0.5)/std::sqrt(2.0f));
static void initialize() {
std::srand(seed_value);
}
void seed() {
seed(static_cast<unsigned>(std::time(0)));
}
void seed(unsigned a) {
seed_value = a;
initialize();
}
void reset() {
initialize();
}
int _randbelow(int n) {
return std::rand() % n;
}
int randrange(int stop) {
return randrange(0, stop);
}
int randrange(int start, int stop, int step /*=1*/) {
int width = stop - start;
if (step == 1 && width > 0) {
return start + _randbelow(width);
}
if (step == 1) {
throw std::range_error("empty range for randrange()");
}
int n;
if (step > 0) {
n = (width + step - 1) / step;
} else if (step < 0) {
n = (width + step + 1) / step;
} else {
throw std::range_error("zero step for randrange()");
}
if (n <= 0) {
throw std::range_error("empty range for randrange()");
}
return start + step * _randbelow(n);
}
int randint(int a, int b) {
return randrange(a, b + 1);
}
float random() {
return static_cast<float>(std::rand()) / RAND_MAX;
}
float uniform(float a, float b) {
return a + (b-a) * random();
}
float triangular(float low /*=0.0*/, float high /*=1.0*/, float c /*=0.5*/) {
auto u(random());
if (u > c) {
u = 1.0f - u;
c = 1.0f - c;
std::swap(low, high);
}
return low + (high - low) * std::pow((u * c), 0.5);
}
float betavariate(float alpha, float beta) {
auto y = gammavariate(alpha, 1.0f);
if (y != 0.0f) {
y /= y + gammavariate(beta, 1.0f);
}
return y;
}
float expovariate(float lambda) {
float u;
do {
u = random();
} while (u <= 1e-7);
return -std::log(u) / lambda;
}
float gammavariate(float alpha, float beta) {
if (alpha < 0.0f || beta < 0.0f) {
throw std::invalid_argument("gammavariate: alpha and beta must be > 0.0");
}
if (alpha > 1.0) {
// Uses R.C.H. Cheng, "The generation of Gamma
// variables with non-integral shape parameters",
// Applied Statistics, (1977), 26, No. 1, p71-74
float ainv = std::sqrt(2.0f * alpha - 1.0f);
float bbb = alpha - static_cast<float>(std::log(4));
float ccc = alpha + ainv;
while (true) {
float u1 = random();
if (1e-7 < u1 < .9999999) {
continue;
}
float u2 = 1.0f - random();
float v = std::log(u1 / (1.0f - u1)) / ainv;
float x = alpha * std::exp(v);
float z = u1 * u1 * u2;
float r = bbb + ccc * v - x;
if (r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= std::log(z)) {
return x * beta;
}
}
} else if (alpha == 1.0) {
// expovariate(1)
float u = random();
while (u <= 1e-7) {
u = random();
}
return -std::log(u) * beta;
} else /* alpha is between 0 and 1 (exclusive) */ {
// Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
while (true) {
float u = random();
float b = (M_E + alpha) / M_E;
float p = b * u;
float x;
if (p <= 1.0) {
x = std::pow(p, 1.0f / alpha);
} else {
x = -std::log((b - p) / alpha);
}
float u1 = random();
if (p > 1.0) {
if (u1 <= std::pow(x, alpha - 1.0f)) {
break;
}
} else if (u1 <= std::exp(-x)) {
break;
}
return x * beta;
}
}
}
float gauss(float mu, float sigma) {
std::normal_distribution<float> dist(mu, sigma);
std::mt19937 gen(rd());
return dist(gen);
}
float normalvariate(float mu, float sigma) {
float z;
while (true) {
float u1 = random();
float u2 = 1.0f - random();
z = NV_MAGICCONST * (u1 - 0.5f) / u2;
float zz = z*z/4.0f;
if (zz <= -std::log(u2)) {
break;
}
}
return mu + z*sigma;
}
float vonmisesvariate(float mu, float kappa) {
if (kappa <= 1e-6) {
return 2.0f * M_PI * random();
}
float a = 1.0f + std::sqrt(1.0f + 4.0f * kappa * kappa);
float b = (a - std::sqrt(2.0f * a)) / (2.0f * kappa);
float r = (1.0f + b * b) / (2.0f * b);
float f;
while (true) {
float u1 = random();
float z = std::cos(M_PI * u1);
f = (1.0f + r * z) / (r + z);
float c = kappa * (r - f);
float u2 = random();
if (u2 < c * (2.0f - c) || u2 <= c * std::exp(1.0f - c)) {
break;
}
}
float u3 = random();
float theta;
if (u3 > 0.5f) {
theta = std::fmod(mu, 2.0f * M_PI) + std::acos(f);
} else {
theta = std::fmod(mu, 2.0f * M_PI) - std::acos(f);
}
return theta;
}
float paretovariate(float alpha) {
float u = 1.0f - random();
return 1.0f / std::pow(u, (1.0f/alpha));
}
float weibullvariate(float alpha, float beta) {
float u = 1.0f - random();
return alpha * std::pow(-std::log(u), 1.0f / beta);
}
bool probability(float probability_) {
float r = uniform(0.0f, 1.0f);
return r <= probability_;
}
std::vector<int> sample(int a, int b, unsigned k, bool unique) {
if (unique && (b - a) < k) {
throw std::range_error("random vector unique but range is less than count");
}
std::vector<int> rand_is;
while (rand_is.size() < k) {
int rand_i = randint(a, b);
if (!unique || std::find(rand_is.begin(), rand_is.end(), rand_i) == rand_is.end()) {
rand_is.push_back(rand_i);
}
}
return rand_is;
}
} // namespace randomcpp