forked from EPFL-LCSB/etfl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_exp_ac.py
185 lines (139 loc) · 7.33 KB
/
plot_exp_ac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import bokeh.plotting as bp
from bokeh.layouts import column
from bokeh.models import ColumnDataSource, LinearAxis, Range1d
from bokeh.palettes import viridis
from bokeh.transform import linear_cmap
from bokeh.io import export_svgs
import pandas as pd
import numpy as np
from os.path import join
from os import makedirs
from scipy import signal
data_folder = 'data'
plots_folder = 'plots'
subplots_folder = join(plots_folder, 'exp_acetate_sub')
makedirs(subplots_folder,exist_ok=True)
# my_data_folder_enj = join('outputs', 'vETFL_enjalbert_vmax_20200330_134009') #1
# my_data_folder_enj = join('outputs', 'vETFL_enjalbert_vmax_20200330_083510') #2
# my_data_folder_enj = join('outputs', 'vETFL_enjalbert_20200407_210513') #new
my_data_folder_enj = join('outputs', 'vETFL_enjalbert_20200414_182924') #new
# my_data_folder_varma = join('outputs', 'vETFL_varma_20200331_224535') #1
# my_data_folder_varma = join('outputs', 'vETFL_varma_vmax_20200330_131840') #2
# my_data_folder_varma = join('outputs', 'vETFL_varma_20200407_190236') #new
my_data_folder_varma = join('outputs', 'vETFL_varma_20200414_152012') #new
BACKEND = 'svg'
def _resample(t,x,delta_t,num=50):
new_t = np.arange(t.min(),t.max(),delta_t)
x_hat,t_hat = signal.resample(x,num,new_t)
return x_hat,t_hat
def _get_offset(source,target,y_col,target_y_col='biomass'):
#TODO: make time-aware
dx = np.mean(np.diff(source.t.values))
source_hat,_ = _resample(source.t,source[y_col],dx)
target_hat,_ = _resample(target.t,target[target_y_col],dx)
shift = (np.argmax(signal.correlate(source_hat, target_hat)) - len(target_hat)) * dx
return shift
def get_avg_offset(source,target,biomass_col='biomass'):
o_ac = _get_offset(source,target,'ac')
o_glc = _get_offset(source,target,'glc')
o_bio = _get_offset(source,target,biomass_col)
return np.mean([o_ac,o_glc,o_bio])
def get_varma_data():
varma_ac = pd.read_csv(join(data_folder, 'varma7_ac.csv'), header=0)
varma_ac. columns = ['t', 'ac']
varma_ac = varma_ac.iloc[varma_ac['t'].sort_values().index]
varma_glc = pd.read_csv(join(data_folder, 'varma7_gl.csv'), header=0)
varma_glc.columns = ['t', 'glc']
varma_glc = varma_glc.iloc[varma_glc['t'].sort_values().index]
varma_bio = pd.read_csv(join(data_folder, 'varma7_bm.csv'), header=0)
varma_bio.columns = ['t', 'biomass']
varma_bio = varma_bio.iloc[varma_bio['t'].sort_values().index]
centered_t = pd.concat([varma_bio['t'],varma_glc['t'],varma_ac['t']],axis=1).mean(axis=1)
centered_dat = pd.DataFrame(columns = ['t','ac','glc','biomass'])
centered_dat['t'] = centered_t
centered_dat['ac'] = varma_ac['ac']
centered_dat['glc'] = varma_glc['glc']
centered_dat['biomass'] = varma_bio['biomass']
centered_dat['t'] -= centered_dat[centered_dat['glc']<=centered_dat['glc'].max()*0.37]['t'].iloc[0]
return centered_dat
def get_enjalbert_data():
raw_dat = pd.read_csv(join(data_folder, 'fig2_fromEnjalbert2015.csv'), header=0)
raw_dat.columns = ['tmin','t','od600','od600_std','glc','glc_std','ac','ac_std']
# raw_dat['t'] -= get_avg_offset(raw_dat,varma,'od600')
raw_dat['t'] -= raw_dat[raw_dat['glc']<=raw_dat['glc'].max()*0.37]['t'].iloc[0]
return raw_dat
def get_my_varma():
raw_data = pd.read_csv(join(my_data_folder_varma, 'solution.csv'), header=0, index_col=0)
# raw_data = pd.read_csv(join('tmp_detfl.csv'),header=0,index_col=0)
# raw_data = pd.read_csv(join('outputs','tmp','tmp_detfl.csv'),header=0,index_col=0)
out = raw_data.loc[['t','S_EX_glc__D_e','S_EX_ac_e','X','mu']].T
out.columns = ['t','glc','ac','X','mu']
# out['t'] -= get_avg_offset(out,varma,'X')
out['t'] -= out[out['glc']<=out['glc'].max()*0.37]['t'].iloc[0]
return out
def get_my_enj():
raw_data = pd.read_csv(join(my_data_folder_enj, 'solution.csv'), header=0, index_col=0)
# raw_data = pd.read_csv(join('outputs','tmp','tmp_detfl.csv'),header=0,index_col=0)
out = raw_data.loc[['t','S_EX_glc__D_e','S_EX_ac_e','X','mu']].T
out.columns = ['t','glc','ac','X','mu']
# out['t'] -= get_avg_offset(out,varma,'X')
out['t'] -= out[out['glc']<=out['glc'].max()*0.37]['t'].iloc[0]
return out
varma = get_varma_data()
enjalbert = get_enjalbert_data()
my_enj = get_my_enj()
my_varma = get_my_varma()
bp.output_file(join(plots_folder,'exp_acetate.html'))
def plot_varma(p,x,y,**kwargs):
p.circle(x=x,y=y,size=7,line_width=3,fill_alpha=0, **kwargs)
def plot_enjalbert(p,x,y,**kwargs):
p.square(x=x,y=y,size=7,line_width=3,fill_alpha=0,color='green',**kwargs)
def plot_my_enj(p, x, y, **kwargs):
p.cross(x=x,y=y,size=7,line_width=3,fill_alpha=0,color='red',**kwargs)
def plot_my_varma(p, x, y, **kwargs):
p.x(x=x,y=y,size=7,line_width=3,fill_alpha=0,color='red',**kwargs)
def plot_exp(p, x, y, **kwargs):
p.x(x=x, y=y, size=7, line_width=2, fill_alpha=0, color='black', **kwargs)
def plot_sim(p,x,y,**kwargs):
p.line(x=x,y=y,line_width=3, color='black',**kwargs)
def plot_conc(exp_dataset, sim_dataset, exp_label):
p_ac = bp.figure(height = 300, width = 800)
plot_exp(p_ac, x=exp_dataset['t'], y=exp_dataset['ac'],legend_label=exp_label + ' dataset')
plot_sim(p_ac, x=sim_dataset['t'], y=sim_dataset['ac'],legend_label='simulated')
p_ac.xaxis.axis_label = 't [h]'
p_ac.yaxis.axis_label = 'Acetate [mmol/(L)]'
p_glc = bp.figure(height = 300, width = 800)
plot_exp(p_glc, x=exp_dataset['t'], y=exp_dataset['glc'],legend_label=exp_label + ' dataset')
plot_sim(p_glc, x=sim_dataset['t'], y=sim_dataset['glc'],legend_label='simulated')
p_glc.xaxis.axis_label = 't [h]'
p_glc.yaxis.axis_label = 'Glucose [mmol/(L)]'
p_ac .output_backend = BACKEND
p_glc.output_backend = BACKEND
return p_ac,p_glc
def plot_biomass(exp_dataset, sim_dataset, exp_label, biomass_col, is_OD = False):
from plotting import make_growth_plot
p = make_growth_plot(None,sim_dataset.T)
if is_OD:
# Setting the second y axis range name and range
# p.extra_y_ranges = {'od_range': Range1d(start=0, end=1.05 * exp_dataset[biomass_col].max())}
# # Adding the second axis to the plot.
# p.add_layout(LinearAxis(y_range_name='od_range',
# axis_label='OD'), 'right')
# plot_exp(p, x=exp_dataset['t'], y=exp_dataset[biomass_col],legend_label=exp_label+' dataset',y_range_name='od_range')
# p.y_range.start = 0
# p.y_range.end = 1.05 * exp_dataset[biomass_col].max()
# Instead, we rescale the OD:
new_y = exp_dataset[biomass_col]
new_y *= (sim_dataset['X'].max() - sim_dataset['X'].min()) / (new_y.max() - new_y.min())
plot_exp(p, x=exp_dataset['t'], y=new_y ,legend_label=exp_label + ' dataset (rescaled)')
else:
plot_exp(p, x=exp_dataset['t'], y=exp_dataset[biomass_col],legend_label=exp_label + ' dataset')
p.output_backend = BACKEND
return p
p_ac_varma, p_glc_varma = plot_conc(varma,my_varma,'Varma')
p_ac_enj, p_glc_enj = plot_conc(enjalbert,my_enj,'Enjalbert')
p_bio_varma = plot_biomass(varma ,my_varma,'Varma' ,biomass_col='biomass',is_OD=False)
p_bio_enj = plot_biomass(enjalbert,my_enj ,'Enjalbert',biomass_col='od600' ,is_OD=True )
to_show = column([p_ac_varma, p_glc_varma, p_ac_enj, p_glc_enj, p_bio_varma, p_bio_enj])
export_svgs(to_show, filename = join(subplots_folder,'plot.svg'))
bp.show(to_show)