forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasyncmap.jl
420 lines (355 loc) · 13.6 KB
/
asyncmap.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Base.Iterators: Enumerate
"""
asyncmap(f, c...; ntasks=0, batch_size=nothing)
Uses multiple concurrent tasks to map `f` over a collection (or multiple
equal length collections). For multiple collection arguments, `f` is
applied elementwise.
`ntasks` specifies the number of tasks to run concurrently.
Depending on the length of the collections, if `ntasks` is unspecified,
up to 100 tasks will be used for concurrent mapping.
`ntasks` can also be specified as a zero-arg function. In this case, the
number of tasks to run in parallel is checked before processing every element and a new
task started if the value of `ntasks_func` is less than the current number
of tasks.
If `batch_size` is specified, the collection is processed in batch mode. `f` must
then be a function that must accept a `Vector` of argument tuples and must
return a vector of results. The input vector will have a length of `batch_size` or less.
The following examples highlight execution in different tasks by returning
the `objectid` of the tasks in which the mapping function is executed.
First, with `ntasks` undefined, each element is processed in a different task.
```
julia> tskoid() = objectid(current_task());
julia> asyncmap(x->tskoid(), 1:5)
5-element Array{UInt64,1}:
0x6e15e66c75c75853
0x440f8819a1baa682
0x9fb3eeadd0c83985
0xebd3e35fe90d4050
0x29efc93edce2b961
julia> length(unique(asyncmap(x->tskoid(), 1:5)))
5
```
With `ntasks=2` all elements are processed in 2 tasks.
```
julia> asyncmap(x->tskoid(), 1:5; ntasks=2)
5-element Array{UInt64,1}:
0x027ab1680df7ae94
0xa23d2f80cd7cf157
0x027ab1680df7ae94
0xa23d2f80cd7cf157
0x027ab1680df7ae94
julia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))
2
```
With `batch_size` defined, the mapping function needs to be changed to accept an array
of argument tuples and return an array of results. `map` is used in the modified mapping
function to achieve this.
```
julia> batch_func(input) = map(x->string("args_tuple: ", x, ", element_val: ", x[1], ", task: ", tskoid()), input)
batch_func (generic function with 1 method)
julia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)
5-element Array{String,1}:
"args_tuple: (1,), element_val: 1, task: 9118321258196414413"
"args_tuple: (2,), element_val: 2, task: 4904288162898683522"
"args_tuple: (3,), element_val: 3, task: 9118321258196414413"
"args_tuple: (4,), element_val: 4, task: 4904288162898683522"
"args_tuple: (5,), element_val: 5, task: 9118321258196414413"
```
!!! note
Currently, all tasks in Julia are executed in a single OS thread co-operatively. Consequently,
`asyncmap` is beneficial only when the mapping function involves any I/O - disk, network, remote
worker invocation, etc.
"""
function asyncmap(f, c...; ntasks=0, batch_size=nothing)
return async_usemap(f, c...; ntasks=ntasks, batch_size=batch_size)
end
function async_usemap(f, c...; ntasks=0, batch_size=nothing)
ntasks = verify_ntasks(c[1], ntasks)
batch_size = verify_batch_size(batch_size)
if batch_size !== nothing
exec_func = batch -> begin
# extract the Refs from the input tuple
batch_refs = map(x->x[1], batch)
# and the args tuple....
batched_args = map(x->x[2], batch)
results = f(batched_args)
foreach(x -> (batch_refs[x[1]].x = x[2]), enumerate(results))
end
else
exec_func = (r,args) -> (r.x = f(args...))
end
chnl, worker_tasks = setup_chnl_and_tasks(exec_func, ntasks, batch_size)
return wrap_n_exec_twice(chnl, worker_tasks, ntasks, exec_func, c...)
end
batch_size_err_str(batch_size) = string("batch_size must be specified as a positive integer. batch_size=", batch_size)
function verify_batch_size(batch_size)
if batch_size === nothing
return batch_size
elseif isa(batch_size, Number)
batch_size = Int(batch_size)
batch_size < 1 && throw(ArgumentError(batch_size_err_str(batch_size)))
return batch_size
else
throw(ArgumentError(batch_size_err_str(batch_size)))
end
end
function verify_ntasks(iterable, ntasks)
if !((isa(ntasks, Number) && (ntasks >= 0)) || isa(ntasks, Function))
err = string("ntasks must be specified as a positive integer or a 0-arg function. ntasks=", ntasks)
throw(ArgumentError(err))
end
if ntasks == 0
if haslength(iterable)
ntasks = max(1,min(100, length(iterable)))
else
ntasks = 100
end
end
return ntasks
end
function wrap_n_exec_twice(chnl, worker_tasks, ntasks, exec_func, c...)
# The driver task, creates a Ref object and writes it and the args tuple to
# the communication channel for processing by a free worker task.
push_arg_to_channel = (x...) -> (r=Ref{Any}(nothing); put!(chnl,(r,x));r)
if isa(ntasks, Function)
map_f = (x...) -> begin
# check number of tasks every time, and start one if required.
# number_tasks > optimal_number is fine, the other way around is inefficient.
if length(worker_tasks) < ntasks()
start_worker_task!(worker_tasks, exec_func, chnl)
end
push_arg_to_channel(x...)
end
else
map_f = push_arg_to_channel
end
maptwice(map_f, chnl, worker_tasks, c...)
end
function maptwice(wrapped_f, chnl, worker_tasks, c...)
# first run, returns a collection of Refs
asyncrun_excp = nothing
local asyncrun
try
asyncrun = map(wrapped_f, c...)
catch ex
if isa(ex,InvalidStateException)
# channel could be closed due to exceptions in the async tasks,
# we propagate those errors, if any, over the `put!` failing
# in asyncrun due to a closed channel.
asyncrun_excp = ex
else
rethrow()
end
end
# close channel and wait for all worker tasks to finish
close(chnl)
# check and throw any exceptions from the worker tasks
foreach(x->(v=fetch(x); isa(v, Exception) && throw(v)), worker_tasks)
# check if there was a genuine problem with asyncrun
(asyncrun_excp !== nothing) && throw(asyncrun_excp)
if isa(asyncrun, Ref)
# scalar case
return asyncrun.x
else
# second run, extract values from the Refs and return
return map(ref->ref.x, asyncrun)
end
end
function setup_chnl_and_tasks(exec_func, ntasks, batch_size=nothing)
if isa(ntasks, Function)
nt = ntasks()::Int
# start at least one worker task.
if nt == 0
nt = 1
end
else
nt = ntasks::Int
end
# Use an unbuffered channel for communicating with the worker tasks. In the event
# of an error in any of the worker tasks, the channel is closed. This
# results in the `put!` in the driver task failing immediately.
chnl = Channel(0)
worker_tasks = []
foreach(_ -> start_worker_task!(worker_tasks, exec_func, chnl, batch_size), 1:nt)
yield()
return (chnl, worker_tasks)
end
function start_worker_task!(worker_tasks, exec_func, chnl, batch_size=nothing)
t = @async begin
retval = nothing
try
if isa(batch_size, Number)
while isopen(chnl)
# The mapping function expects an array of input args, as it processes
# elements in a batch.
batch_collection=Any[]
n = 0
for exec_data in chnl
push!(batch_collection, exec_data)
n += 1
(n == batch_size) && break
end
if n > 0
exec_func(batch_collection)
end
end
else
for exec_data in chnl
exec_func(exec_data...)
end
end
catch e
close(chnl)
retval = e
end
retval
end
push!(worker_tasks, t)
end
# Special handling for some types.
function asyncmap(f, s::AbstractString; kwargs...)
s2 = Vector{Char}(undef, length(s))
asyncmap!(f, s2, s; kwargs...)
return String(s2)
end
# map on a single BitArray returns a BitArray if the mapping function is boolean.
function asyncmap(f, b::BitArray; kwargs...)
b2 = async_usemap(f, b; kwargs...)
if eltype(b2) == Bool
return BitArray(b2)
end
return b2
end
mutable struct AsyncCollector
f
results
enumerator::Enumerate
ntasks
batch_size
nt_check::Bool # check number of tasks on every iteration
AsyncCollector(f, r, en::Enumerate, ntasks, batch_size) = new(f, r, en, ntasks, batch_size, isa(ntasks, Function))
end
"""
AsyncCollector(f, results, c...; ntasks=0, batch_size=nothing) -> iterator
Return an iterator which applies `f` to each element of `c` asynchronously
and collects output into `results`.
Keyword args `ntasks` and `batch_size` have the same behavior as in
[`asyncmap`](@ref). If `batch_size` is specified, `f` must
be a function which operates on an array of argument tuples.
!!! note
`iterate(::AsyncCollector, state) -> (nothing, state)`. A successful return
from `iterate` indicates that the next element from the input collection is
being processed asynchronously. It blocks until a free worker task becomes
available.
!!! note
`for _ in AsyncCollector(f, results, c...; ntasks=1) end` is equivalent to
`map!(f, results, c...)`.
"""
function AsyncCollector(f, results, c...; ntasks=0, batch_size=nothing)
AsyncCollector(f, results, enumerate(zip(c...)), ntasks, batch_size)
end
mutable struct AsyncCollectorState
chnl::Channel
worker_tasks::Array{Task,1}
enum_state # enumerator state
AsyncCollectorState(chnl::Channel, worker_tasks::Vector) =
new(chnl, convert(Vector{Task}, worker_tasks))
end
function iterate(itr::AsyncCollector)
itr.ntasks = verify_ntasks(itr.enumerator, itr.ntasks)
itr.batch_size = verify_batch_size(itr.batch_size)
if itr.batch_size !== nothing
exec_func = batch -> begin
# extract indices from the input tuple
batch_idxs = map(x->x[1], batch)
# and the args tuple....
batched_args = map(x->x[2], batch)
results = f(batched_args)
foreach(x -> (itr.results[batch_idxs[x[1]]] = x[2]), enumerate(results))
end
else
exec_func = (i,args) -> (itr.results[i]=itr.f(args...))
end
chnl, worker_tasks = setup_chnl_and_tasks((i,args) -> (itr.results[i]=itr.f(args...)), itr.ntasks, itr.batch_size)
return iterate(itr, AsyncCollectorState(chnl, worker_tasks))
end
function wait_done(itr::AsyncCollector, state::AsyncCollectorState)
close(state.chnl)
# wait for all tasks to finish
foreach(x->(v=fetch(x); isa(v, Exception) && throw(v)), state.worker_tasks)
empty!(state.worker_tasks)
end
function iterate(itr::AsyncCollector, state::AsyncCollectorState)
if itr.nt_check && (length(state.worker_tasks) < itr.ntasks())
start_worker_task!(state.worker_tasks, itr.f, state.chnl)
end
# Get index and mapped function arguments from enumeration iterator.
y = isdefined(state, :enum_state) ?
iterate(itr.enumerator, state.enum_state) :
iterate(itr.enumerator)
if y === nothing
wait_done(itr, state)
return nothing
end
(i, args), state.enum_state = y
put!(state.chnl, (i, args))
return (nothing, state)
end
"""
AsyncGenerator(f, c...; ntasks=0, batch_size=nothing) -> iterator
Apply `f` to each element of `c` using at most `ntasks` asynchronous tasks.
Keyword args `ntasks` and `batch_size` have the same behavior as in
[`asyncmap`](@ref). If `batch_size` is specified, `f` must
be a function which operates on an array of argument tuples.
!!! note
`collect(AsyncGenerator(f, c...; ntasks=1))` is equivalent to
`map(f, c...)`.
"""
mutable struct AsyncGenerator
collector::AsyncCollector
end
function AsyncGenerator(f, c...; ntasks=0)
AsyncGenerator(AsyncCollector(f, Dict{Int,Any}(), c...; ntasks=ntasks))
end
mutable struct AsyncGeneratorState
i::Int
collector_done::Bool
collector_state::AsyncCollectorState
AsyncGeneratorState(i::Int) = new(i, false)
end
function iterate(itr::AsyncGenerator, state::AsyncGeneratorState=AsyncGeneratorState(0))
state.i += 1
results_dict = itr.collector.results
while !state.collector_done && !haskey(results_dict, state.i)
y = isdefined(state, :collector_state) ?
iterate(itr.collector, state.collector_state) :
iterate(itr.collector)
if y === nothing
# `check_done` waits for async tasks to finish. if we do not have the index
# we are looking for, it is an error.
state.collector_done = true
break;
end
_, state.collector_state = y
end
state.collector_done && isempty(results_dict) && return nothing
r = results_dict[state.i]
delete!(results_dict, state.i)
return (r, state)
end
# pass-through iterator traits to the iterable
# on which the mapping function is being applied
IteratorSize(::Type{AsyncGenerator}) = SizeUnknown()
IteratorEltype(::Type{AsyncGenerator}) = EltypeUnknown()
size(itr::AsyncGenerator) = size(itr.collector.enumerator)
length(itr::AsyncGenerator) = length(itr.collector.enumerator)
"""
asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)
Like [`asyncmap`](@ref), but stores output in `results` rather than
returning a collection.
"""
function asyncmap!(f, r, c1, c...; ntasks=0, batch_size=nothing)
foreach(identity, AsyncCollector(f, r, c1, c...; ntasks=ntasks, batch_size=batch_size))
r
end