forked from letscontrolit/ESPEasy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_P039_Thermocouple.ino
291 lines (256 loc) · 9.3 KB
/
_P039_Thermocouple.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
//#######################################################################################################
//######################## Plugin 039: Thermocouple (MAX6675 / MAX31855) ################################
//#######################################################################################################
// Original work by Dominik
// Plugin Description
// This Plugin reads the data from Thermocouples. You have to use an Adapter Board with a
// MAX6675 or MAX31855 in order to read the values. Take a look at ebay to find such boards :-)
// You can only use ESP8266 boards which expose the SPI Interface. This Plugin uses only the Hardware
// SPI Interface - no software SPI at the moment.
// But nevertheless you need at least 3 Pins to use SPI. So using an very simple ESP-01 is no option - Sorry.
// The Wiring is straight forward ...
//
// If you like to send suggestions feel free to send me an email : [email protected]
// Have fun ... Dominik
// Wiring
// https://de.wikipedia.org/wiki/Serial_Peripheral_Interface
// You need an ESP8266 device with accessible SPI Pins. These are:
// Name Description GPIO NodeMCU Notes
// MOSI Master Output GPIO13 D7 Not used (No Data sending to MAX)
// MISO Master Input GPIO12 D6 Hardware SPI
// SCK Clock Output GPIO14 D5 Hardware SPI
// CS Chip Select GPIO15 D8 Hardware SPI (CS is configurable through the web interface)
// Thermocouple Infos
// http://www.bristolwatch.com/ele2/therc.htm
// Chips
// MAX6675 - Cold-Junction-Compensated K-Thermocouple-to-Digital Converter ( 0°C to +1024°C)
// https://cdn-shop.adafruit.com/datasheets/MAX6675.pdf (only
// MAX31855 - Cold-Junction Compensated Thermocouple-to-Digital Converter (-270°C to +1800°C)
// https://cdn-shop.adafruit.com/datasheets/MAX31855.pdf
#include <SPI.h>
#define PLUGIN_039
#define PLUGIN_ID_039 39
#define PLUGIN_NAME_039 "Environment - Thermocouple"
#define PLUGIN_VALUENAME1_039 "Temperature"
uint8_t Plugin_039_SPI_CS_Pin = 15; // D8
bool Plugin_039_SensorAttached = true;
uint32_t Plugin_039_Sensor_fault = 0;
double Plugin_039_Celsius = 0.0;
boolean Plugin_039(byte function, struct EventStruct *event, String& string)
{
boolean success = false;
switch (function)
{
case PLUGIN_DEVICE_ADD:
{
Device[++deviceCount].Number = PLUGIN_ID_039;
Device[deviceCount].Type = DEVICE_TYPE_SINGLE;
Device[deviceCount].VType = SENSOR_TYPE_SINGLE;
Device[deviceCount].Ports = 0;
Device[deviceCount].PullUpOption = false;
Device[deviceCount].InverseLogicOption = false;
Device[deviceCount].FormulaOption = true;
Device[deviceCount].ValueCount = 1;
Device[deviceCount].SendDataOption = true;
Device[deviceCount].TimerOption = true;
Device[deviceCount].GlobalSyncOption = true;
break;
}
case PLUGIN_GET_DEVICENAME:
{
string = F(PLUGIN_NAME_039);
break;
}
case PLUGIN_GET_DEVICEVALUENAMES:
{
strcpy_P(ExtraTaskSettings.TaskDeviceValueNames[0], PSTR(PLUGIN_VALUENAME1_039));
break;
}
case PLUGIN_INIT:
{
// Get CS Pin
// If no Pin is in Config we use 15 as default -> Hardware Chip Select on ESP8266
if (Settings.TaskDevicePin1[event->TaskIndex] != 0)
{
// Konvert the GPIO Pin to a Dogotal Puin Number first ...
Plugin_039_SPI_CS_Pin = Settings.TaskDevicePin1[event->TaskIndex];
}
// set the slaveSelectPin as an output:
pinMode(Plugin_039_SPI_CS_Pin, OUTPUT);
// initialize SPI:
SPI.setHwCs(false);
SPI.begin();
addLog(LOG_LEVEL_INFO, F("P039 : SPI Init"));
success = true;
break;
}
case PLUGIN_WEBFORM_LOAD:
{
addFormNote(string, F("<b>1st GPIO</b> = CS (Usable GPIOs : 0, 2, 4, 5, 15)"));
//string += F("<TR><TD>Info GPIO:<TD><b>1st GPIO</b> = CS (Usable GPIOs : 0, 2, 4, 5, 15)");
byte choice = Settings.TaskDevicePluginConfig[event->TaskIndex][0];
String options[2];
options[0] = F("MAX 6675");
options[1] = F("MAX 31855");
//options[2] = F("MAX 31865");
int optionValues[2] = { 1, 2 };
addFormSelector(string, F("Adapter IC"), F("plugin_039_maxtype"), 2, options, optionValues, choice);
success = true;
break;
}
case PLUGIN_WEBFORM_SAVE:
{
Settings.TaskDevicePluginConfig[event->TaskIndex][0] = getFormItemInt(F("plugin_039_maxtype"));
success = true;
break;
}
case PLUGIN_READ:
{
// Get the MAX Type (6675 / 31855)
// TBD ... Auswertung je nach Chip !!!
byte MaxType = Settings.TaskDevicePluginConfig[event->TaskIndex][0];
// Get CS Pin
// Konvert the GPIO Pin to a Dogotal Puin Number first ...
Plugin_039_SPI_CS_Pin = Settings.TaskDevicePin1[event->TaskIndex];
switch (MaxType) {
case 1: // MAX6675
Plugin_039_Celsius = readMax6675();
break;
case 2: // MAX31855
Plugin_039_Celsius = readMax31855();
break;
case 3: // MAX31865 (not implemented yet)
//do something when var equals 2
break;
}
if (Plugin_039_Celsius != NAN)
{
UserVar[event->BaseVarIndex] = Plugin_039_Celsius;
String log = F("P039 : Temperature ");
log += UserVar[event->BaseVarIndex];
addLog(LOG_LEVEL_INFO, log);
success = true;
}
else
{
UserVar[event->BaseVarIndex] = NAN;
UserVar[event->BaseVarIndex + 1] = NAN;
addLog(LOG_LEVEL_INFO, F("P039 : No Sensor attached !"));
success = false;
}
break;
}
}
return success;
}
double readMax6675()
{
uint16_t rawvalue = 0;
// take the SS pin low to select the chip:
digitalWrite(Plugin_039_SPI_CS_Pin, LOW);
// String log = F("P039 : CS Pin : ");
// log += Plugin_039_SPI_CS_Pin;
// addLog(LOG_LEVEL_INFO, log);
// "transfer" 0x0 and read the Data from the Chip
rawvalue = SPI.transfer16(0x0);
// take the SS pin high to de-select the chip:
digitalWrite(Plugin_039_SPI_CS_Pin, HIGH);
String log = F("P039 : MAX6675 : RAW - BIN:");
log += String(rawvalue, BIN);
log += " HEX:";
log += String(rawvalue, HEX);
log += " DEC:";
log += String(rawvalue);
addLog(LOG_LEVEL_DEBUG, log);
// Open Thermocouple
// Bit D2 is normally low and goes high if the thermocouple input is open. In order to allow the operation of the
// open thermocouple detector, T- must be grounded. Make the ground connection as close to the GND pin
// as possible.
Plugin_039_SensorAttached = !(rawvalue & 0x0004);
if (Plugin_039_SensorAttached)
{
// Shift RAW value 3 Bits to the right to get the data
rawvalue >>= 3;
// Calculate Celsius
return rawvalue * 0.25;
}
else
{
return NAN;
}
}
double readMax31855()
{
uint32_t rawvalue = 0;
// take the SS pin low to select the chip:
digitalWrite(Plugin_039_SPI_CS_Pin, LOW);
// "transfer" 0x0 and read the MSB Data from the Chip
rawvalue = SPI.transfer16(0x0);
// Shift MSB 16 Bits to the left
rawvalue <<= 16;
// "transfer" 0x0 and read the LSB Data from the Chip
rawvalue |= SPI.transfer16(0x0);
// take the SS pin high to de-select the chip:
digitalWrite(Plugin_039_SPI_CS_Pin, HIGH);
String log = F("P039 : MAX31855 : RAW - BIN:");
log += String(rawvalue, BIN);
log += " HEX:";
log += String(rawvalue, HEX);
log += " DEC:";
log += String(rawvalue);
addLog(LOG_LEVEL_DEBUG, log);
if (Plugin_039_Sensor_fault != (rawvalue & 0x7)) {
// Fault code changed, log them
Plugin_039_Sensor_fault = (rawvalue & 0x7);
log = F("P039 : MAX31855");
if (Plugin_039_Sensor_fault == 0) {
log += F("Fault resolved");
} else {
log += F("Fault code:");
if (rawvalue & 0x01) {
log += F(" Open (no connection)");
}
if (rawvalue & 0x02) {
log += F(" Short-circuit to GND");
}
if (rawvalue & 0x04) {
log += F(" Short-circuit to Vcc");
}
}
addLog(LOG_LEVEL_DEBUG, log);
}
// D16 - This bit reads at 1 when any of the SCV, SCG, or OC faults are active. Default value is 0.
Plugin_039_SensorAttached = !(rawvalue & 0x00010000);
if (Plugin_039_SensorAttached)
{
// Data is D[31:18]
// Shift RAW value 18 Bits to the right to get the data
rawvalue >>= 18;
// Check for negative Values
// +25.00 0000 0001 1001 00
// 0.00 0000 0000 0000 00
// -0.25 1111 1111 1111 11
// -1.00 1111 1111 1111 00
// -250.00 1111 0000 0110 00
// We're left with (32 - 18 =) 14 bits
int temperature = Plugin_039_convert_two_complement(rawvalue, 14);
// Calculate Celsius
return temperature * 0.25;
}
else
{
// Fault state, thus output no value.
return NAN;
}
}
int Plugin_039_convert_two_complement(uint32_t value, int nr_bits) {
const bool negative = (value & (1 << (nr_bits - 1))) != 0;
int nativeInt;
if (negative) {
// Add zeroes to the left to create the proper negative native-sized integer.
nativeInt = value | ~((1 << nr_bits) - 1);
} else {
nativeInt = value;
}
return nativeInt;
}