Skip to content

Use C++ with OpenCV and cvBlob to perform image processing and object tracking, using a webcam. Originally, built to test Raspberry Pi performance.

Notifications You must be signed in to change notification settings

brunston/object-tracking-blogpost

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

##Object Tracking Project Use C++ with OpenCV and cvBlob to perform image processing and object tracking, using a webcam. Originally, built to test Raspberry Pi performance.

GitHub Branches

Master

Original code for my blog post, 'Object Tracking on the Raspberry Pi with C++, OpenCV, and cvBlob'

rev05_2014

Changes to original project branch:

  • Refactored video blob tracking methods into a separate class.
  • Refactored hard-coded color ranges. Now input parameters.
  • All methods now accept common struct containing input parameters.
  • New window displays low and high RGB color range color sample.
  • Added support for Travis-CI. Project now building on each commit to GitHub.
  • Project contains bash commands/script to install latest OpenCV, cvBlob, and all necessary dependencies on Ubuntu.
  • Project contains bash commands/script to git clone, build, package, and run this project on Ubuntu.
  • All installation and configuration tested with fresh Ubuntu image on VirtualBox VM

Installation and Configuration

sudo apt-get update && sudo apt-get -y upgrade

# install openCV
cd ~/
sudo apt-get -y install git
# I had a problem with dependencies.sh finding libfaac-dev in multiverse repository.
# Multiverse repository is commented out by default in sources.list.
# Modify /etc/apt/sources.list. See: http://superuser.com/a/467775
sed -i '/precise multiverse/s/# //g' /etc/apt/sources.list
sed -i '/precise-updates multiverse/s/# //g' /etc/apt/sources.list
#sed -i '/precise-security multiverse/s/# //g' /etc/apt/sources.list
sudo apt-get update

git clone https://github.com/jayrambhia/Install-OpenCV
cd Install-OpenCV/Ubuntu
./opencv_latest.sh | tee ~/opencv_install.log

# install object-tracking-blogpostobject-tracking-blogpost  project
cd ~/
git clone https://github.com/garystafford/object-tracking-blogpost.git

#install cvBlob (uses script within object-tracking-blogpost project)
sh /object-tracking-blogpost/install_cvBlob.sh | tee ~/cvblob_install.log

# optional - fixed problem with app finding cvBlob library when started
echo 'export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH' | sudo tee -a ~/.bashrc
bash --login # or exit VM and log back in

# build project (compile object tracking application)
cd ~/object-tracking-blogpost/CppAppOpenCV
make -f nbproject/Makefile-Release.mk QMAKE= SUBPROJECTS= .build-conf

# run object tracking application
cd ~/object-tracking-blogpost/CppAppOpenCV/dist/Release/GNU-Linux-x86
./cppappopencv

# package object tracking application for distribution as .tar (incld. static images)
cd ~/object-tracking-blogpost/CppAppOpenCV
bash nbproject/Package-Release.bash

# use packaged object tracking application
cd ~/object-tracking-blogpost/CppAppOpenCV/dist/Release/GNU-Linux-x86/package/
tar -xvf cppappopencv.tar -C ~/

Color Range Examples

These are the values shown in the blog post and YouTube video

  • Red balls
    • Low RGB: 155, 0, 0
    • High RGB: 255, 130, 130
  • Blue paper
    • Low RGB: 49, 69, 100
    • High RGB: 134, 163, 216
  • Green paper
    • Low RGB: 45, 92, 76
    • High RGB: 70, 155, 124
  • Orange Pen
    • Low RGB: 25, 90, 56
    • High RGB: 255, 190, 120

Previews

![Preview 1](https://github.com/garystafford/object-tracking-blogpost/blob/rev05_2014/images/object_grab_1_preview.png?raw=true)

![Preview 2](https://github.com/garystafford/object-tracking-blogpost/blob/rev05_2014/images/object_grab_2_preview.png?raw=true)

![Preview 3](https://github.com/garystafford/object-tracking-blogpost/blob/rev05_2014/images/object_grab_4_preview.png?raw=true)

About

Use C++ with OpenCV and cvBlob to perform image processing and object tracking, using a webcam. Originally, built to test Raspberry Pi performance.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 47.5%
  • Makefile 43.3%
  • Shell 8.4%
  • C 0.8%