-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathscaling.py
156 lines (134 loc) · 4.57 KB
/
scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- mode: python; coding: utf-8 -*-
#
# Copyright (C) 2024 Benjamin Thomas Schwertfeger
# All rights reserved.
# https://github.com/btschwertfeger
#
"""
Module providing functions for scaling-based bias adjustments. Functions are not
intended to used directly - but as part of the adjustment procedure triggered by
:func:``cmethods.adjust``.
"""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Final
import numpy as np
from cmethods.static import ADDITIVE, MAX_SCALING_FACTOR, MULTIPLICATIVE
from cmethods.utils import (
check_adjust_called,
check_np_types,
ensure_dividable,
get_adjusted_scaling_factor,
)
if TYPE_CHECKING:
from cmethods.types import NPData
# ? -----========= L I N E A R - S C A L I N G =========------
def linear_scaling(
obs: NPData,
simh: NPData,
simp: NPData,
kind: str = "+",
**kwargs: Any,
) -> NPData:
r"""
**Do not call this function directly, please use :func:`cmethods.adjust`**
See https://python-cmethods.readthedocs.io/en/latest/methods.html#linear-scaling
"""
check_adjust_called(
function_name="linear_scaling",
adjust_called=kwargs.get("adjust_called"),
)
check_np_types(obs=obs, simh=simh, simp=simp)
if kind in ADDITIVE:
return np.array(simp) + (np.nanmean(obs) - np.nanmean(simh)) # Eq. 1
if kind in MULTIPLICATIVE:
max_scaling_factor: Final[float] = kwargs.get(
"max_scaling_factor",
MAX_SCALING_FACTOR,
)
adj_scaling_factor: Final[float] = get_adjusted_scaling_factor(
ensure_dividable(
np.nanmean(obs),
np.nanmean(simh),
max_scaling_factor,
),
max_scaling_factor,
)
return np.array(simp) * adj_scaling_factor # Eq. 2
raise NotImplementedError(
f"{kind=} not available for linear_scaling. Use '+' or '*' instead.",
)
# ? -----========= V A R I A N C E - S C A L I N G =========------
def variance_scaling(
obs: NPData,
simh: NPData,
simp: NPData,
kind: str = "+",
**kwargs: Any,
) -> NPData:
r"""
**Do not call this function directly, please use :func:`cmethods.CMethods.adjust`**
See https://python-cmethods.readthedocs.io/en/latest/methods.html#variance-scaling
"""
check_adjust_called(
function_name="variance_scaling",
adjust_called=kwargs.get("adjust_called"),
)
check_np_types(obs=obs, simh=simp, simp=simp)
if kind in ADDITIVE:
LS_simh = linear_scaling(obs, simh, simh, kind="+", **kwargs) # Eq. 1
LS_simp = linear_scaling(obs, simh, simp, kind="+", **kwargs) # Eq. 2
VS_1_simh = LS_simh - np.nanmean(LS_simh) # Eq. 3
VS_1_simp = LS_simp - np.nanmean(LS_simp) # Eq. 4
max_scaling_factor: Final[float] = kwargs.get(
"max_scaling_factor",
MAX_SCALING_FACTOR,
)
adj_scaling_factor: Final[float] = get_adjusted_scaling_factor(
ensure_dividable(
np.std(np.array(obs)),
np.std(VS_1_simh),
max_scaling_factor,
),
max_scaling_factor,
)
VS_2_simp = VS_1_simp * adj_scaling_factor # Eq. 5
return VS_2_simp + np.nanmean(LS_simp) # Eq. 6
raise NotImplementedError(
f"{kind=} not available for variance_scaling. Use '+' instead.",
)
# ? -----========= D E L T A - M E T H O D =========------
def delta_method(
obs: NPData,
simh: NPData,
simp: NPData,
kind: str = "+",
**kwargs: Any,
) -> NPData:
r"""
**Do not call this function directly, please use :func:`cmethods.adjust`**
See https://python-cmethods.readthedocs.io/en/latest/methods.html#delta-method
"""
check_adjust_called(
function_name="delta_method",
adjust_called=kwargs.get("adjust_called"),
)
check_np_types(obs=obs, simh=simh, simp=simp)
if kind in ADDITIVE:
return np.array(obs) + (np.nanmean(simp) - np.nanmean(simh)) # Eq. 1
if kind in MULTIPLICATIVE:
max_scaling_factor: Final[float] = kwargs.get(
"max_scaling_factor",
MAX_SCALING_FACTOR,
)
adj_scaling_factor = get_adjusted_scaling_factor(
ensure_dividable(
np.nanmean(simp),
np.nanmean(simh),
max_scaling_factor,
),
max_scaling_factor,
)
return np.array(obs) * adj_scaling_factor # Eq. 2
raise NotImplementedError(
f"{kind=} not available for delta_method. Use '+' or '*' instead.",
)