-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathSHPSG.py
65 lines (55 loc) · 2.5 KB
/
SHPSG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
def SHPSG(Ei, Fi, D2_8, D9_15):
Fvec = np.zeros((4,3),dtype=complex)
# Determine C0 and C1 with Ei, Fi and a unit maximum principal dimension
# A sphere with unit diameter
fvec_sphere = -np.sqrt(np.pi/6)*np.array([[0,0,0],[-1,1j,0],[0,0,np.sqrt(2)],[1,1j,0]])
Fvec[0:4,0] = fvec_sphere[:,0]
Fvec[0:4,1] = Ei*fvec_sphere[:,1]
Fvec[0:4,2] = (Fi*Ei)*fvec_sphere[:,2]
d1 = np.sqrt(sum(sum((Fvec*np.conj(Fvec))))).real
# Determine C2-C15 with d2_8 and d9_16
# Determine d2 and d9
# Assume alpha = 1.387 and beta = 1.426
D_2 = D2_8/((2/2)**1.387+(2/3)**1.387+(2/4)**1.387+(2/5)**1.387+(2/6)**1.387+(2/7)**1.387+(2/8)**1.387)*d1
D_9 = D9_15/((9/9)**1.426+(9/10)**1.426+(9/11)**1.426+(9/12)**1.426+(9/13)**1.426+(9/14)**1.426+(9/15)**1.426)*d1
# Determine d3-d8 and d10-d15
# -Assume all descriptors have three identical decomposition at x-, y- and z-axis
I = np.zeros((16,3),dtype = float)
I[1,:] = [1,1,1]
I[2,:] = [D_2,D_2,D_2]
for c in range(3,9):
dn = [D_2*((c-1)/2)**(-1.387)/np.sqrt(3),D_2*((c-1)/2)**(-1.387)/np.sqrt(3),
D_2*((c-1)/2)**(-1.387)/np.sqrt(3)]
I[c,:] = dn
for c in range(9,15):
dn = [D_9*((c-1)/9)**(-1.426)/np.sqrt(3),D_9*((c-1)/9)**(-1.426)/np.sqrt(3),
D_9*((c-1)/9)**(-1.426)/np.sqrt(3)]
I[c,:] = dn
L = np.zeros((16**2,3))
N = np.zeros((16**2,3))
# Randomly generate P including C1'-C15' with c_n^(-m)=(-1)^m*c_n^m*
for n in range(1,16):
J = np.ones((n+1,3))-2*np.random.rand(n+1,3) # [-1,1]
K = np.flipud(J[0:n,:])
A = [[(-1)**n,(-1)**n,(-1)**n]]
B = K*A
L[n**2:(n+1)**2,:] = np.append(J,B,axis=0)
M = np.ones((n,3))-2*np.random.rand(n,3)
M1 = np.append(M,[[0,0,0]],axis = 0)
N[n**2:(n+1)**2,:] = np.append(M1,np.flipud((-1)**(n+1)*M),axis = 0)
P = L+N*1j
P[0,:] = np.ones((1,3))-2*np.random.rand(1,3)
# Calculate d1'-d16' with the SH coeffiecients of P
Q = np.conj(P)
R = np.zeros((16,3))
for n in range(16):
R[n,:] = np.sqrt(sum(P[n**2:(n+1)**2,:]*Q[n**2:(n+1)**2,:]).real)
# Determine C2-C15 by making the descriptors of P equal to d2-d15
fvec = np.zeros((16**2,3),dtype = complex)
fvec[0:4,:] = Fvec
for d in range(2,16):
fvec[d**2:(d+1)**2,0] = P[d**2:(d+1)**2,0]/R[d,0]*I[d,0]
fvec[d**2:(d+1)**2,1] = P[d**2:(d+1)**2,1]/R[d,1]*I[d,1]
fvec[d**2:(d+1)**2,2] = P[d**2:(d+1)**2,2]/R[d,2]*I[d,2]
return fvec