-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
203 lines (153 loc) · 8.58 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from flask import Flask, request, send_file
from flask import json
import numpy as np
import math
import cv2
import os
from werkzeug.datastructures import FileStorage
import io
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin_min
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import LabelEncoder
from scipy.spatial.distance import cdist
api = Flask(__name__)
def match_palette_to_edited_palette(original_palette, edited_palette):
# Compute pairwise distances
distances = cdist(original_palette, edited_palette, metric='minkowski')
# Get the index of the closest color in the edited_palette for each color in the original_palette
indices = np.argmin(distances, axis=1)
return indices
@api.route('/convert_with_palette', methods=['POST'])
def color_transfer_with_palette():
# ensure required parameters are present
if not all(key in request.files for key in ['target_image', 'source_image']):
return "Missing required file in request", 400
if not all(key in request.form for key in ['original_palette', 'edited_palette']):
return "Missing required form data in request", 400
target_image: FileStorage = request.files['target_image']
source_image: FileStorage = request.files['source_image']
original_palette = json.loads(request.form['original_palette']) # receive original color palette
edited_palette = json.loads(request.form['edited_palette']) # receive edited color palette
# Load images and apply color transformation
s = cv2.cvtColor(cv2.imdecode(np.frombuffer(source_image.read(), np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2LAB)
t = cv2.cvtColor(cv2.imdecode(np.frombuffer(target_image.read(), np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2LAB)
# Convert palettes to LAB color space
original_palette = [cv2.cvtColor(np.uint8([[np.array(color)]]) , cv2.COLOR_RGB2LAB)[0][0] for color in original_palette] # type: ignore
edited_palette = [cv2.cvtColor(np.uint8([[np.array(color)]]) , cv2.COLOR_RGB2LAB)[0][0] for color in edited_palette] # type: ignore
# Map the source image pixels to the closest color in the original palette
s_lab = s.copy().reshape((-1, 3))
labels = pairwise_distances_argmin_min(s_lab, original_palette, metric='minkowski')[0]
# Map the original palette to the edited palette
palette_mapping = match_palette_to_edited_palette(original_palette, edited_palette)
# Map the source image pixels to the edited palette
s_mapped_flattened = np.array(edited_palette)[palette_mapping[labels]]
s_mapped = s_mapped_flattened.reshape(s.shape)
# Calculate mean and standard deviation of source and target images
s_mean, s_std = cv2.meanStdDev(s_mapped)
s_mean, s_std = np.array(s_mean).flatten(), np.array(s_std).flatten()
t_mean, t_std = cv2.meanStdDev(t)
t_mean, t_std = np.array(t_mean).flatten(), np.array(t_std).flatten()
# Apply color transfer
t = ((t - t_mean) * (s_std / t_std)) + s_mean
t = np.round(t).astype(np.float32)
t = np.clip(t, 0, 255)
# Convert back to 8-bit unsigned integer
t = t.astype(np.uint8)
t = cv2.cvtColor(t, cv2.COLOR_LAB2BGR)
# Convert array into bytes, and then save in memory file
is_success, im_buf_arr = cv2.imencode(".jpg", t)
byte_im = io.BytesIO(im_buf_arr.tobytes())
print(is_success)
# Return the image data in memory as file
byte_im.seek(0)
return send_file(byte_im, mimetype='image/jpeg')
@api.route('/convert', methods=['POST'])
def color_transfer():
source_image: FileStorage = request.files['source_image']
target_image: FileStorage = request.files['target_image']
# Load images and apply color transformation
s = cv2.cvtColor(cv2.imdecode(np.frombuffer(source_image.read(), np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2LAB)
t = cv2.cvtColor(cv2.imdecode(np.frombuffer(target_image.read(), np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2LAB)
def get_mean_and_std(x):
x_mean, x_std = cv2.meanStdDev(x)
x_mean = np.hstack(np.around(x_mean,2))
x_std = np.hstack(np.around(x_std,2))
return x_mean, x_std
s_mean, s_std = get_mean_and_std(s)
t_mean, t_std = get_mean_and_std(t)
t = ((t - t_mean) * (s_std / t_std)) + s_mean
t = np.round(t).astype(np.float32)
t = np.clip(t, 0, 255)
# Convert back to 8-bit unsigned integer
t = t.astype(np.uint8)
t = cv2.cvtColor(t, cv2.COLOR_LAB2BGR)
# Convert array into bytes, and then save in memory file
is_success, im_buf_arr = cv2.imencode(".jpg", t, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
byte_im = io.BytesIO(im_buf_arr.tobytes())
print(is_success)
return send_file(byte_im, mimetype='image/jpeg')
@api.route('/convert_with_palette_video', methods=['POST'])
def color_transfer_with_palette_to_video():
# ensure required parameters are present
if not all(key in request.files for key in ['target_video', 'source_image']):
return "Missing required file in request", 400
if not all(key in request.form for key in ['original_palette', 'edited_palette']):
return "Missing required form data in request", 400
target_video: FileStorage = request.files['target_video']
source_image: FileStorage = request.files['source_image']
original_palette = json.loads(request.form['original_palette']) # receive original color palette
edited_palette = json.loads(request.form['edited_palette']) # receive edited color palette
# Load the source image
source_image = cv2.imdecode(np.frombuffer(source_image.read(), np.uint8), cv2.IMREAD_COLOR)
# Convert palettes to LAB color space
original_palette_lab = [cv2.cvtColor(np.uint8([[np.array(color)]]), cv2.COLOR_RGB2LAB)[0][0] for color in original_palette] # type: ignore
edited_palette_lab = [cv2.cvtColor(np.uint8([[np.array(color)]]), cv2.COLOR_RGB2LAB)[0][0] for color in edited_palette] # type: ignore
# Open the target video file
target_video_path = 'target_video.mp4'
target_video.save(target_video_path)
target_video = cv2.VideoCapture(target_video_path)
# Get video properties
frame_width = int(target_video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(target_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = target_video.get(cv2.CAP_PROP_FPS)
total_frames = int(target_video.get(cv2.CAP_PROP_FRAME_COUNT))
# Create output video writer
output_video_path = 'output_video.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
# Process each frame of the target video
for frame_idx in range(total_frames):
ret, target_frame = target_video.read()
if not ret:
break
# Convert target frame to LAB color space
target_frame_lab = cv2.cvtColor(target_frame, cv2.COLOR_BGR2LAB)
# Map the source image pixels to the closest color in the original palette
source_frame_lab = source_image.reshape((-1, 3))
labels = pairwise_distances_argmin_min(source_frame_lab, original_palette_lab, metric='minkowski')[0]
# Map the original palette to the edited palette
palette_mapping = match_palette_to_edited_palette(original_palette_lab, edited_palette_lab)
# Map the source image pixels to the edited palette
source_mapped_flattened = np.array(edited_palette_lab)[palette_mapping[labels]]
source_mapped = source_mapped_flattened.reshape(source_image.shape)
# Calculate mean and standard deviation of source and target frames
source_mean, source_std = cv2.meanStdDev(source_mapped)
source_mean, source_std = np.array(source_mean).flatten(), np.array(source_std).flatten()
target_mean, target_std = cv2.meanStdDev(target_frame_lab)
target_mean, target_std = np.array(target_mean).flatten(), np.array(target_std).flatten()
# Apply color transfer
target_frame_lab = ((target_frame_lab - target_mean) * (source_std / target_std)) + source_mean
target_frame_lab = np.round(target_frame_lab).astype(np.float32)
target_frame_lab = np.clip(target_frame_lab, 0, 255)
# Convert back to BGR color space
target_frame_bgr = cv2.cvtColor(target_frame_lab.astype(np.uint8), cv2.COLOR_LAB2BGR)
# Write the modified frame to the output video
output_video.write(target_frame_bgr)
# Release resources
target_video.release()
output_video.release()
# Send the resulting video file as a response
return send_file(output_video_path, mimetype='video/mp4')
if __name__ == '__main__':
api.run(host='0.0.0.0', port=5003,debug=False)