forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_data_pipeline.py
110 lines (89 loc) · 3.62 KB
/
test_data_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
import shutil
import torch
import numpy as np
import unittest
from openfold.data.data_pipeline import DataPipeline
from openfold.data.templates import TemplateHitFeaturizer
from openfold.model.embedders import (
InputEmbedder,
RecyclingEmbedder,
TemplateAngleEmbedder,
TemplatePairEmbedder,
)
import tests.compare_utils as compare_utils
if compare_utils.alphafold_is_installed():
alphafold = compare_utils.import_alphafold()
import jax
import haiku as hk
class TestDataPipeline(unittest.TestCase):
@compare_utils.skip_unless_alphafold_installed()
def test_fasta_compare(self):
# AlphaFold runs the alignments and feature processing at the same
# time, taking forever. As such, we precompute AlphaFold's features
# using scripts/generate_alphafold_feature_dict.py and the default
# databases.
with open("tests/test_data/alphafold_feature_dict.pickle", "rb") as fp:
alphafold_feature_dict = pickle.load(fp)
template_featurizer = TemplateHitFeaturizer(
mmcif_dir="tests/test_data/mmcifs",
max_template_date="2021-12-20",
max_hits=20,
kalign_binary_path=shutil.which("kalign"),
_zero_center_positions=False,
)
data_pipeline = DataPipeline(
template_featurizer=template_featurizer,
)
openfold_feature_dict = data_pipeline.process_fasta(
"tests/test_data/short.fasta",
"tests/test_data/alignments"
)
openfold_feature_dict["template_all_atom_masks"] = openfold_feature_dict["template_all_atom_mask"]
checked = []
# AlphaFold and OpenFold process their MSAs in slightly different
# orders, which we compensate for below.
m_a = alphafold_feature_dict["msa"]
m_o = openfold_feature_dict["msa"]
# The first row of both MSAs should be the same, no matter what
self.assertTrue(np.all(m_a[0, :] == m_o[0, :]))
# Each row of each MSA should appear exactly once somewhere in its
# counterpart
matching_rows = np.all((m_a[:, None, ...] == m_o[None, :, ...]), axis=-1)
self.assertTrue(
np.all(
np.sum(matching_rows, axis=-1) == 1
)
)
checked.append("msa")
# The corresponding rows of the deletion matrix should also be equal
matching_idx = np.argmax(matching_rows, axis=-1)
rearranged_o_dmi = openfold_feature_dict["deletion_matrix_int"]
rearranged_o_dmi = rearranged_o_dmi[matching_idx, :]
self.assertTrue(
np.all(
alphafold_feature_dict["deletion_matrix_int"] ==
rearranged_o_dmi
)
)
checked.append("deletion_matrix_int")
# Remaining features have to be precisely equal
for k, v in alphafold_feature_dict.items():
self.assertTrue(
k in checked or np.all(v == openfold_feature_dict[k])
)
if __name__ == "__main__":
unittest.main()