forked from google-research/bert
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f39e881
commit bee6030
Showing
5 changed files
with
294 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
# coding=utf-8 | ||
# Copyright 2018 The Google AI Language Team Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""BERT finetuning runner with TF-Hub.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import os | ||
import optimization | ||
import run_classifier | ||
import tokenization | ||
import tensorflow as tf | ||
import tensorflow_hub as hub | ||
|
||
flags = tf.flags | ||
|
||
FLAGS = flags.FLAGS | ||
|
||
flags.DEFINE_string( | ||
"bert_hub_module_handle", None, | ||
"Handle for the BERT TF-Hub module.") | ||
|
||
|
||
def create_model(is_training, input_ids, input_mask, segment_ids, labels, | ||
num_labels): | ||
"""Creates a classification model.""" | ||
tags = set() | ||
if is_training: | ||
tags.add("train") | ||
bert_module = hub.Module( | ||
FLAGS.bert_hub_module_handle, | ||
tags=tags, | ||
trainable=True) | ||
bert_inputs = dict( | ||
input_ids=input_ids, | ||
input_mask=input_mask, | ||
segment_ids=segment_ids) | ||
bert_outputs = bert_module( | ||
inputs=bert_inputs, | ||
signature="tokens", | ||
as_dict=True) | ||
|
||
# In the demo, we are doing a simple classification task on the entire | ||
# segment. | ||
# | ||
# If you want to use the token-level output, use | ||
# bert_outputs["sequence_output"] instead. | ||
output_layer = bert_outputs["pooled_output"] | ||
|
||
hidden_size = output_layer.shape[-1].value | ||
|
||
output_weights = tf.get_variable( | ||
"output_weights", [num_labels, hidden_size], | ||
initializer=tf.truncated_normal_initializer(stddev=0.02)) | ||
|
||
output_bias = tf.get_variable( | ||
"output_bias", [num_labels], initializer=tf.zeros_initializer()) | ||
|
||
with tf.variable_scope("loss"): | ||
if is_training: | ||
# I.e., 0.1 dropout | ||
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) | ||
|
||
logits = tf.matmul(output_layer, output_weights, transpose_b=True) | ||
logits = tf.nn.bias_add(logits, output_bias) | ||
log_probs = tf.nn.log_softmax(logits, axis=-1) | ||
|
||
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) | ||
|
||
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) | ||
loss = tf.reduce_mean(per_example_loss) | ||
|
||
return (loss, per_example_loss, logits) | ||
|
||
|
||
def model_fn_builder(num_labels, learning_rate, num_train_steps, | ||
num_warmup_steps, use_tpu): | ||
"""Returns `model_fn` closure for TPUEstimator.""" | ||
|
||
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument | ||
"""The `model_fn` for TPUEstimator.""" | ||
|
||
tf.logging.info("*** Features ***") | ||
for name in sorted(features.keys()): | ||
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) | ||
|
||
input_ids = features["input_ids"] | ||
input_mask = features["input_mask"] | ||
segment_ids = features["segment_ids"] | ||
label_ids = features["label_ids"] | ||
|
||
is_training = (mode == tf.estimator.ModeKeys.TRAIN) | ||
|
||
(total_loss, per_example_loss, logits) = create_model( | ||
is_training, input_ids, input_mask, segment_ids, label_ids, num_labels) | ||
|
||
output_spec = None | ||
if mode == tf.estimator.ModeKeys.TRAIN: | ||
train_op = optimization.create_optimizer( | ||
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) | ||
|
||
output_spec = tf.contrib.tpu.TPUEstimatorSpec( | ||
mode=mode, | ||
loss=total_loss, | ||
train_op=train_op) | ||
elif mode == tf.estimator.ModeKeys.EVAL: | ||
|
||
def metric_fn(per_example_loss, label_ids, logits): | ||
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) | ||
accuracy = tf.metrics.accuracy(label_ids, predictions) | ||
loss = tf.metrics.mean(per_example_loss) | ||
return { | ||
"eval_accuracy": accuracy, | ||
"eval_loss": loss, | ||
} | ||
|
||
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits]) | ||
output_spec = tf.contrib.tpu.TPUEstimatorSpec( | ||
mode=mode, | ||
loss=total_loss, | ||
eval_metrics=eval_metrics) | ||
else: | ||
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode)) | ||
|
||
return output_spec | ||
|
||
return model_fn | ||
|
||
|
||
def create_tokenizer_from_hub_module(): | ||
"""Get the vocab file and casing info from the Hub module.""" | ||
with tf.Graph().as_default(): | ||
bert_module = hub.Module(FLAGS.bert_hub_module_handle) | ||
tokenization_info = bert_module(signature="tokenization_info", as_dict=True) | ||
with tf.Session() as sess: | ||
vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"], | ||
tokenization_info["do_lower_case"]]) | ||
return tokenization.FullTokenizer( | ||
vocab_file=vocab_file, do_lower_case=do_lower_case) | ||
|
||
|
||
def main(_): | ||
tf.logging.set_verbosity(tf.logging.INFO) | ||
|
||
processors = { | ||
"cola": run_classifier.ColaProcessor, | ||
"mnli": run_classifier.MnliProcessor, | ||
"mrpc": run_classifier.MrpcProcessor, | ||
} | ||
|
||
if not FLAGS.do_train and not FLAGS.do_eval: | ||
raise ValueError("At least one of `do_train` or `do_eval` must be True.") | ||
|
||
tf.gfile.MakeDirs(FLAGS.output_dir) | ||
|
||
task_name = FLAGS.task_name.lower() | ||
|
||
if task_name not in processors: | ||
raise ValueError("Task not found: %s" % (task_name)) | ||
|
||
processor = processors[task_name]() | ||
|
||
label_list = processor.get_labels() | ||
|
||
tokenizer = create_tokenizer_from_hub_module() | ||
|
||
tpu_cluster_resolver = None | ||
if FLAGS.use_tpu and FLAGS.tpu_name: | ||
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( | ||
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) | ||
|
||
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 | ||
run_config = tf.contrib.tpu.RunConfig( | ||
cluster=tpu_cluster_resolver, | ||
master=FLAGS.master, | ||
model_dir=FLAGS.output_dir, | ||
save_checkpoints_steps=FLAGS.save_checkpoints_steps, | ||
tpu_config=tf.contrib.tpu.TPUConfig( | ||
iterations_per_loop=FLAGS.iterations_per_loop, | ||
num_shards=FLAGS.num_tpu_cores, | ||
per_host_input_for_training=is_per_host)) | ||
|
||
train_examples = None | ||
num_train_steps = None | ||
num_warmup_steps = None | ||
if FLAGS.do_train: | ||
train_examples = processor.get_train_examples(FLAGS.data_dir) | ||
num_train_steps = int( | ||
len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) | ||
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) | ||
|
||
model_fn = model_fn_builder( | ||
num_labels=len(label_list), | ||
learning_rate=FLAGS.learning_rate, | ||
num_train_steps=num_train_steps, | ||
num_warmup_steps=num_warmup_steps, | ||
use_tpu=FLAGS.use_tpu) | ||
|
||
# If TPU is not available, this will fall back to normal Estimator on CPU | ||
# or GPU. | ||
estimator = tf.contrib.tpu.TPUEstimator( | ||
use_tpu=FLAGS.use_tpu, | ||
model_fn=model_fn, | ||
config=run_config, | ||
train_batch_size=FLAGS.train_batch_size, | ||
eval_batch_size=FLAGS.eval_batch_size) | ||
|
||
if FLAGS.do_train: | ||
train_features = run_classifier.convert_examples_to_features( | ||
train_examples, label_list, FLAGS.max_seq_length, tokenizer) | ||
tf.logging.info("***** Running training *****") | ||
tf.logging.info(" Num examples = %d", len(train_examples)) | ||
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) | ||
tf.logging.info(" Num steps = %d", num_train_steps) | ||
train_input_fn = run_classifier.input_fn_builder( | ||
features=train_features, | ||
seq_length=FLAGS.max_seq_length, | ||
is_training=True, | ||
drop_remainder=True) | ||
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) | ||
|
||
if FLAGS.do_eval: | ||
eval_examples = processor.get_dev_examples(FLAGS.data_dir) | ||
eval_features = run_classifier.convert_examples_to_features( | ||
eval_examples, label_list, FLAGS.max_seq_length, tokenizer) | ||
|
||
tf.logging.info("***** Running evaluation *****") | ||
tf.logging.info(" Num examples = %d", len(eval_examples)) | ||
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) | ||
|
||
# This tells the estimator to run through the entire set. | ||
eval_steps = None | ||
# However, if running eval on the TPU, you will need to specify the | ||
# number of steps. | ||
if FLAGS.use_tpu: | ||
# Eval will be slightly WRONG on the TPU because it will truncate | ||
# the last batch. | ||
eval_steps = int(len(eval_examples) / FLAGS.eval_batch_size) | ||
|
||
eval_drop_remainder = True if FLAGS.use_tpu else False | ||
eval_input_fn = run_classifier.input_fn_builder( | ||
features=eval_features, | ||
seq_length=FLAGS.max_seq_length, | ||
is_training=False, | ||
drop_remainder=eval_drop_remainder) | ||
|
||
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) | ||
|
||
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") | ||
with tf.gfile.GFile(output_eval_file, "w") as writer: | ||
tf.logging.info("***** Eval results *****") | ||
for key in sorted(result.keys()): | ||
tf.logging.info(" %s = %s", key, str(result[key])) | ||
writer.write("%s = %s\n" % (key, str(result[key]))) | ||
|
||
|
||
if __name__ == "__main__": | ||
flags.mark_flag_as_required("data_dir") | ||
flags.mark_flag_as_required("task_name") | ||
flags.mark_flag_as_required("bert_hub_module_handle") | ||
flags.mark_flag_as_required("output_dir") | ||
tf.app.run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters