You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
*[Deep Neural Networks for YouTube Recommendations.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Recommendation/Deep%20Neural%20Networks%20for%20YouTube%20Recommendations.pdf) <br />
24
-
*[Matrix Factorization Techniques for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Recommendation/Matrix%20Factorization%20%20Techniques%20for%20%20Recommender%20%20Systems.pdf) <br />
25
-
*[Wide & Deep Learning for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Recommendation/Wide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
*[Google Vizier A Service for Black-Box Optimization.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Optimization%20Method/Google%20Vizier%20A%20Service%20for%20Black-Box%20Optimization.pdf) <br />
*[Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br />
46
36
*[Entire Space Multi-Task Model_ An Effective Approach for Estimating Post-Click Conversion Rate.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Entire%20Space%20Multi-Task%20Model_%20An%20Effective%20Approach%20for%20Estimating%20Post-Click%20Conversion%20Rate.pdf) <br />
47
-
*[Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br />
48
-
*[Wide & Deep Learning for Recommender Systems](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Wide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
49
-
Google 的 Wide & Deep 模型,论文将模型用于推荐系统中,但也可用于 CTR 预估中
50
-
*[Deep Learning over Multi-field Categorical Data](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
37
+
*[Deep Learning over Multi-field Categorical Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
51
38
张伟楠博士的论文,提出了 FNN 模型,类似 Wide & Deep 的 Deep 部分,亮点在于用 FM 预训练的隐向量初始化 embedding 层
52
-
*[Product-based Neural Networks for User Response Prediction](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Product-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br />
39
+
*[Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br />
40
+
*[Product-based Neural Networks for User Response Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Product-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br />
*[Ad Click Prediction a View from the Trenches.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Ad%20Click%20Prediction%20a%20View%20from%20the%20Trenches.pdf) <br />
55
43
Google大名鼎鼎的用FTRL解决CTR在线预估的工程文章,非常经典。
56
44
*[DeepFM- A Factorization-Machine based Neural Network for CTR Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/DeepFM-%20A%20Factorization-Machine%20based%20Neural%20Network%20for%20CTR%20Prediction.pdf) <br />
57
45
*[Logistic Regression in Rare Events Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Logistic%20Regression%20in%20Rare%20Events%20Data.pdf) <br />
58
46
样本稀少情况下的LR模型训练,讲的比较细
59
47
*[Learning Deep Structured Semantic Models for Web Search using Clickthrough Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Deep%20Structured%20Semantic%20Models%20for%20Web%20Search%20using%20Clickthrough%20Data.pdf) <br />
48
+
*[Wide & Deep Learning for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Wide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
49
+
Google 的 Wide & Deep 模型,论文将模型用于推荐系统中,但也可用于 CTR 预估中
60
50
*[Adaptive Targeting for Online Advertisement.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Adaptive%20Targeting%20for%20Online%20Advertisement.pdf) <br />
61
51
一篇比较简单但是全面的CTR预估的文章,有一定实用性
62
52
*[Practical Lessons from Predicting Clicks on Ads at Facebook.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Practical%20Lessons%20from%20Predicting%20Clicks%20on%20Ads%20at%20Facebook.pdf) <br />
*[MapReduce Simplified Data Processing on Large Clusters.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Google%20Three%20Papers/MapReduce%20Simplified%20Data%20Processing%20on%20Large%20Clusters.pdf) <br />
78
68
*[The Google File System.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Google%20Three%20Papers/The%20Google%20File%20System.pdf) <br />
79
-
80
69
*[Bigtable A Distributed Storage System for Structured Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Google%20Three%20Papers/Bigtable%20A%20Distributed%20Storage%20System%20for%20Structured%20Data.pdf) <br />
*[Scaling Factorization Machines to Relational Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Factorization%20Machines/Scaling%20Factorization%20Machines%20to%20Relational%20Data.pdf) <br />
90
-
91
79
*[Fast Context-aware Recommendations with Factorization Machines.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Factorization%20Machines/Fast%20Context-aware%20Recommendations%20with%20Factorization%20Machines.pdf) <br />
92
80
*[fastFM- A Library for Factorization Machines.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Factorization%20Machines/fastFM-%20A%20Library%20for%20Factorization%20Machines.pdf) <br />
93
81
@@ -179,10 +167,9 @@ PID控制的经典教程
179
167
张伟楠博士的RTB过程所有相关算法的书,全而精,非常棒
180
168
*[Efficient Query Evaluation using a Two-Level Retrieval Process.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Efficient%20Query%20Evaluation%20using%20a%20Two-Level%20Retrieval%20Process.pdf) <br />
Google 一篇关于 A/B 测试框架的论文,涉及到如何切分流量以同时进行多个 A/B 测试,工程性很强
184
170
*[Scaling Distributed Machine Learning with the Parameter Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Scaling%20Distributed%20Machine%20Learning%20with%20the%20Parameter%20Server.pdf) <br />
*[Scalable Hands-Free Transfer Learning for Online Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Transfer%20Learning/Scalable%20Hands-Free%20Transfer%20Learning%20for%20Online%20Advertising.pdf) <br />
204
-
205
190
*[A Survey on Transfer Learning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Transfer%20Learning/A%20Survey%20on%20Transfer%20Learning.pdf) <br />
0 commit comments