Skip to content

Commit 5e27f88

Browse files
committed
remove reco papers and update readme
1 parent b27f877 commit 5e27f88

File tree

1 file changed

+7
-22
lines changed

1 file changed

+7
-22
lines changed

README.md

+7-22
Original file line numberDiff line numberDiff line change
@@ -16,16 +16,6 @@
1616

1717
## 目录
1818

19-
### Recommendation
20-
推荐系统相关文章,研究不多,欢迎补充
21-
* [微博推荐策略平台Eros.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Recommendation/%E5%BE%AE%E5%8D%9A%E6%8E%A8%E8%8D%90%E7%AD%96%E7%95%A5%E5%B9%B3%E5%8F%B0Eros.pdf) <br />
22-
23-
* [Deep Neural Networks for YouTube Recommendations.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Recommendation/Deep%20Neural%20Networks%20for%20YouTube%20Recommendations.pdf) <br />
24-
* [Matrix Factorization Techniques for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Recommendation/Matrix%20Factorization%20%20Techniques%20for%20%20Recommender%20%20Systems.pdf) <br />
25-
* [Wide & Deep Learning for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Recommendation/Wide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
26-
* [基于BPR-MF算法的推荐系统设计.docx](https://github.com/wzhe06/Ad-papers/blob/master/Recommendation/%E5%9F%BA%E4%BA%8EBPR-MF%E7%AE%97%E6%B3%95%E7%9A%84%E6%8E%A8%E8%8D%90%E7%B3%BB%E7%BB%9F%E8%AE%BE%E8%AE%A1.docx) <br />
27-
28-
2919
### Optimization Method
3020
Online Optimization,Parallel SGD,FTRL等优化方法,很实用的一些文章
3121
* [Google Vizier A Service for Black-Box Optimization.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Optimization%20Method/Google%20Vizier%20A%20Service%20for%20Black-Box%20Optimization.pdf) <br />
@@ -44,19 +34,19 @@ CTR预估模型相关问题
4434
* [Deep Crossing- Web-Scale Modeling without Manually Crafted Combinatorial Features.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Crossing-%20Web-Scale%20Modeling%20without%20Manually%20Crafted%20Combinatorial%20Features.pdf) <br />
4535
* [Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br />
4636
* [Entire Space Multi-Task Model_ An Effective Approach for Estimating Post-Click Conversion Rate.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Entire%20Space%20Multi-Task%20Model_%20An%20Effective%20Approach%20for%20Estimating%20Post-Click%20Conversion%20Rate.pdf) <br />
47-
* [Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br />
48-
* [Wide & Deep Learning for Recommender Systems](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Wide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
49-
Google 的 Wide & Deep 模型,论文将模型用于推荐系统中,但也可用于 CTR 预估中
50-
* [Deep Learning over Multi-field Categorical Data](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
37+
* [Deep Learning over Multi-field Categorical Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
5138
张伟楠博士的论文,提出了 FNN 模型,类似 Wide & Deep 的 Deep 部分,亮点在于用 FM 预训练的隐向量初始化 embedding 层
52-
* [Product-based Neural Networks for User Response Prediction](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Product-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br />
39+
* [Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br />
40+
* [Product-based Neural Networks for User Response Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Product-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br />
5341
张伟楠博士的另外一篇论文,提出了 PNN 模型,在 FNN 基础上对特征的隐向量进行了 inner product 作为新特征
5442
* [Ad Click Prediction a View from the Trenches.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Ad%20Click%20Prediction%20a%20View%20from%20the%20Trenches.pdf) <br />
5543
Google大名鼎鼎的用FTRL解决CTR在线预估的工程文章,非常经典。
5644
* [DeepFM- A Factorization-Machine based Neural Network for CTR Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/DeepFM-%20A%20Factorization-Machine%20based%20Neural%20Network%20for%20CTR%20Prediction.pdf) <br />
5745
* [Logistic Regression in Rare Events Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Logistic%20Regression%20in%20Rare%20Events%20Data.pdf) <br />
5846
样本稀少情况下的LR模型训练,讲的比较细
5947
* [Learning Deep Structured Semantic Models for Web Search using Clickthrough Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Deep%20Structured%20Semantic%20Models%20for%20Web%20Search%20using%20Clickthrough%20Data.pdf) <br />
48+
* [Wide & Deep Learning for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Wide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
49+
Google 的 Wide & Deep 模型,论文将模型用于推荐系统中,但也可用于 CTR 预估中
6050
* [Adaptive Targeting for Online Advertisement.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Adaptive%20Targeting%20for%20Online%20Advertisement.pdf) <br />
6151
一篇比较简单但是全面的CTR预估的文章,有一定实用性
6252
* [Practical Lessons from Predicting Clicks on Ads at Facebook.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Practical%20Lessons%20from%20Predicting%20Clicks%20on%20Ads%20at%20Facebook.pdf) <br />
@@ -76,7 +66,6 @@ Facebook的一篇非常出名的文章,GBDT+LR/FM解决CTR预估问题,工
7666
Google三大篇,HDFS,MapReduce,BigTable,奠定大数据基础架构的三篇文章,应该读一读
7767
* [MapReduce Simplified Data Processing on Large Clusters.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Google%20Three%20Papers/MapReduce%20Simplified%20Data%20Processing%20on%20Large%20Clusters.pdf) <br />
7868
* [The Google File System.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Google%20Three%20Papers/The%20Google%20File%20System.pdf) <br />
79-
8069
* [Bigtable A Distributed Storage System for Structured Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Google%20Three%20Papers/Bigtable%20A%20Distributed%20Storage%20System%20for%20Structured%20Data.pdf) <br />
8170

8271

@@ -87,7 +76,6 @@ FM因子分解机模型的相关paper,在计算广告领域非常实用的模
8776
* [Factorization Machines Rendle2010.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Factorization%20Machines/Factorization%20Machines%20Rendle2010.pdf) <br />
8877
* [libfm-1.42.manual.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Factorization%20Machines/libfm-1.42.manual.pdf) <br />
8978
* [Scaling Factorization Machines to Relational Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Factorization%20Machines/Scaling%20Factorization%20Machines%20to%20Relational%20Data.pdf) <br />
90-
9179
* [Fast Context-aware Recommendations with Factorization Machines.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Factorization%20Machines/Fast%20Context-aware%20Recommendations%20with%20Factorization%20Machines.pdf) <br />
9280
* [fastFM- A Library for Factorization Machines.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Factorization%20Machines/fastFM-%20A%20Library%20for%20Factorization%20Machines.pdf) <br />
9381

@@ -179,10 +167,9 @@ PID控制的经典教程
179167
张伟楠博士的RTB过程所有相关算法的书,全而精,非常棒
180168
* [Efficient Query Evaluation using a Two-Level Retrieval Process.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Efficient%20Query%20Evaluation%20using%20a%20Two-Level%20Retrieval%20Process.pdf) <br />
181169
搜索广告中经典的搜索算法 Wand(Weak AND)
182-
* [Overlapping Experiment Infrastructure:More, Better, Faster Experimentation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Overlapping%20Experiment%20Infrastructure%20More%2C%20Better%2C%20Faster%20Experimentation.pdf) <br />
183-
Google 一篇关于 A/B 测试框架的论文,涉及到如何切分流量以同时进行多个 A/B 测试,工程性很强
184170
* [Scaling Distributed Machine Learning with the Parameter Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Scaling%20Distributed%20Machine%20Learning%20with%20the%20Parameter%20Server.pdf) <br />
185-
171+
* [Overlapping Experiment Infrastructure More, Better, Faster Experimentation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Overlapping%20Experiment%20Infrastructure%20More%2C%20Better%2C%20Faster%20Experimentation.pdf) <br />
172+
Google 一篇关于 A/B 测试框架的论文,涉及到如何切分流量以同时进行多个 A/B 测试,工程性很强
186173

187174
### Machine Learning Tutorial
188175
机器学习方面一些非常实用的学习资料
@@ -194,14 +181,12 @@ Google 一篇关于 A/B 测试框架的论文,涉及到如何切分流量以
194181
* [Deep Learning Tutorial.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Machine%20Learning%20Tutorial/Deep%20Learning%20Tutorial.pdf) <br />
195182
* [广义线性模型.ppt](https://github.com/wzhe06/Ad-papers/blob/master/Machine%20Learning%20Tutorial/%E5%B9%BF%E4%B9%89%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B.ppt) <br />
196183
* [贝叶斯统计学(PPT).pdf](https://github.com/wzhe06/Ad-papers/blob/master/Machine%20Learning%20Tutorial/%E8%B4%9D%E5%8F%B6%E6%96%AF%E7%BB%9F%E8%AE%A1%E5%AD%A6%28PPT%29.pdf) <br />
197-
198184
* [关联规则基本算法及其应用.doc](https://github.com/wzhe06/Ad-papers/blob/master/Machine%20Learning%20Tutorial/%E5%85%B3%E8%81%94%E8%A7%84%E5%88%99%E5%9F%BA%E6%9C%AC%E7%AE%97%E6%B3%95%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8.doc) <br />
199185

200186

201187
### Transfer Learning
202188
迁移学习相关文章,计算广告中经常遇到新广告冷启动的问题,利用迁移学习能较好解决该问题
203189
* [Scalable Hands-Free Transfer Learning for Online Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Transfer%20Learning/Scalable%20Hands-Free%20Transfer%20Learning%20for%20Online%20Advertising.pdf) <br />
204-
205190
* [A Survey on Transfer Learning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Transfer%20Learning/A%20Survey%20on%20Transfer%20Learning.pdf) <br />
206191

207192

0 commit comments

Comments
 (0)