You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: README.md
+8-6
Original file line number
Diff line number
Diff line change
@@ -8,8 +8,8 @@
8
8
9
9
**会不断加入一些重要的计算广告相关论文和资料,并去掉一些过时的或者跟计算广告不太相关的论文**
10
10
11
-
*`New!`[Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br />
12
-
阿里提出的Large Scale Piece-wise Linear Model (LS-PLM) CTR预估模型
11
+
*`New!`[Image Matters- Visually modeling user behaviors using Advanced Model Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Image%20Matters-%20Visually%20modeling%20user%20behaviors%20using%20Advanced%20Model%20Server.pdf) <br />
12
+
阿里提出引入商品图像特征的(Deep Image CTR Model)CTR预估模型,并介绍其分布式机器学习框架 Advanced Model Server (AMS)
13
13
*`New!`[Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br />
*[Deep & Cross Network for Ad Click Predictions.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20%26%20Cross%20Network%20for%20Ad%20Click%20Predictions.pdf) <br />
36
-
Google 在17年发表的 Deep&Cross 网络,类似于 Wide&Deep, 比起 PNN 只做了特征二阶交叉,Deep&Cross 理论上能够做任意高阶的特征交叉
*[Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br />
39
37
*[[FNN]Deep Learning over Multi-field Categorical Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BFNN%5DDeep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
40
38
*[Entire Space Multi-Task Model_ An Effective Approach for Estimating Post-Click Conversion Rate.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Entire%20Space%20Multi-Task%20Model_%20An%20Effective%20Approach%20for%20Estimating%20Post-Click%20Conversion%20Rate.pdf) <br />
41
39
*[Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br />
42
40
*[Product-based Neural Networks for User Response Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Product-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br />
*[Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Bid-aware%20Gradient%20Descent%20for%20Unbiased%20Learning%20with%20Censored%20Data%20in%20Display%20Advertising.pdf) <br />
*[Ad Click Prediction a View from the Trenches.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Ad%20Click%20Prediction%20a%20View%20from%20the%20Trenches.pdf) <br />
45
45
Google大名鼎鼎的用FTRL解决CTR在线预估的工程文章,非常经典。
46
+
*[Image Matters- Visually modeling user behaviors using Advanced Model Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Image%20Matters-%20Visually%20modeling%20user%20behaviors%20using%20Advanced%20Model%20Server.pdf) <br />
46
47
*[[DeepFM]- A Factorization-Machine based Neural Network for CTR Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BDeepFM%5D-%20A%20Factorization-Machine%20based%20Neural%20Network%20for%20CTR%20Prediction.pdf) <br />
47
48
*[Logistic Regression in Rare Events Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Logistic%20Regression%20in%20Rare%20Events%20Data.pdf) <br />
48
49
样本稀少情况下的LR模型训练,讲的比较细
50
+
*[Deep & Cross Network for Ad Click Predictions.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20%26%20Cross%20Network%20for%20Ad%20Click%20Predictions.pdf) <br />
51
+
Google 在17年发表的 Deep&Cross 网络,类似于 Wide&Deep, 比起 PNN 只做了特征二阶交叉,Deep&Cross 理论上能够做任意高阶的特征交叉
52
+
*[An Overview of Multi-Task Learning in Deep Neural Networks.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/An%20Overview%20of%20Multi-Task%20Learning%20in%20Deep%20Neural%20Networks.pdf) <br />
49
53
*[Learning Deep Structured Semantic Models for Web Search using Clickthrough Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Deep%20Structured%20Semantic%20Models%20for%20Web%20Search%20using%20Clickthrough%20Data.pdf) <br />
50
54
*[Wide & Deep Learning for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Wide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
51
55
Google 的 Wide & Deep 模型,论文将模型用于推荐系统中,但也可用于 CTR 预估中
52
56
*[Adaptive Targeting for Online Advertisement.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Adaptive%20Targeting%20for%20Online%20Advertisement.pdf) <br />
53
57
一篇比较简单但是全面的CTR预估的文章,有一定实用性
54
58
*[Practical Lessons from Predicting Clicks on Ads at Facebook.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Practical%20Lessons%20from%20Predicting%20Clicks%20on%20Ads%20at%20Facebook.pdf) <br />
55
59
Facebook的一篇非常出名的文章,GBDT+LR/FM解决CTR预估问题,工程性很强
56
-
*[Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Bid-aware%20Gradient%20Descent%20for%20Unbiased%20Learning%20with%20Censored%20Data%20in%20Display%20Advertising.pdf)<br />
0 commit comments