forked from swissmicros/SDKdemo
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathpolynomial.cc
1698 lines (1499 loc) · 50.2 KB
/
polynomial.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// ****************************************************************************
// polynomial.c DB48X project
// ****************************************************************************
//
// File Description:
//
// Dense representation of multivariate polynomials
//
// Some operations on polynomials are much easier or faster if done
// with a numerical representation of the coefficients.
// We choose a dense representation here in line with the primary objective
// of DB48X to run on very memory-constrainted machines like the DM42
//
//
//
// ****************************************************************************
// (C) 2024 Christophe de Dinechin <[email protected]>
// This software is licensed under the terms outlined in LICENSE.txt
// ****************************************************************************
// This file is part of DB48X.
//
// DB48X is free software: you can redistribute it and/or modify
// it under the terms outlined in the LICENSE.txt file
//
// DB48X is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// ****************************************************************************
#include "polynomial.h"
#include "arithmetic.h"
#include "expression.h"
#include "grob.h"
#include "integer.h"
#include "leb128.h"
#include "parser.h"
#include "variables.h"
polynomial_p polynomial::make(algebraic_p value)
// ----------------------------------------------------------------------------
// Convert a value into an algebraic with zero variables
// ----------------------------------------------------------------------------
{
if (!value || value->type() == ID_polynomial)
return polynomial_p(value);
if (expression_g expr = value->as<expression>())
{
value = nullptr;
if (object_p quoted = expr->as_quoted())
if (algebraic_p alg = quoted->as_algebraic())
value = alg;
if (!value)
return make(expr);
}
if (symbol_g sym = value->as<symbol>())
return make(sym);
if (!value->is_numeric_constant())
return nullptr;
// Case where we have a numerical constant
scribble scr;
algebraic_g avalue = value;
size_t sz = value->size();
byte *p = rt.allocate(1 + sz);
if (!p)
return nullptr;
*p++ = 0; // Number of variables = 0
memcpy(p, +avalue, sz);
gcbytes data = scr.scratch();
size_t datasz = scr.growth();
return rt.make<polynomial>(data, datasz);
}
polynomial_p polynomial::make(symbol_p name)
// ----------------------------------------------------------------------------
// Convert a name into an algebraic with a single variable
// ----------------------------------------------------------------------------
{
if (!name || name->type() != ID_symbol)
return nullptr;
scribble scr;
symbol_g aname = name;
byte_p src = name->payload();
byte_p p = src;
size_t len = leb128<size_t>(p);
size_t namesz = p + len - src;
size_t polysz = namesz + integer::required_memory(ID_integer, 1) + 2;
byte *dst = rt.allocate(polysz);
if (!dst)
return nullptr;
dst = leb128(dst, 1); // Number of variables = 1
memcpy(dst, src, namesz); // Copy name
dst += namesz;
dst = leb128(dst, ID_integer); // Encode constant 1 (scaling factor)
dst = leb128(dst, 1);
dst = leb128(dst, 1); // Encode exponent 1
gcbytes data = scr.scratch();
size_t datasz = scr.growth();
return rt.make<polynomial>(data, datasz);
}
polynomial_p polynomial::make(algebraic_r factor, symbol_r sym, ularge exp)
// ----------------------------------------------------------------------------
// Convert a value into an algebraic with zero variables
// ----------------------------------------------------------------------------
{
if (!factor || !sym)
return nullptr;
if (exp == 0)
return make(factor);
// Case where we have a numerical constant
scribble scr;
size_t len = sym->length();
size_t fsz = factor->size();
size_t asz = 1 + fsz + len + leb128size(len) + leb128size(exp);
byte *p = rt.allocate(asz);
if (!p)
return nullptr;
*p++ = 1; // Number of variables = 1
p = leb128(p, len);
memcpy(p, sym->value(), len);
p += len;
memcpy(p, +factor, fsz);
p += fsz;
p = leb128(p, exp);
gcbytes data = scr.scratch();
size_t datasz = scr.growth();
return rt.make<polynomial>(data, datasz);
}
static bool polynomial_op(size_t depth, polynomial_p (*op)(polynomial_r x))
// ----------------------------------------------------------------------------
// Unary operation
// ----------------------------------------------------------------------------
{
if (rt.depth() - depth >= 1)
if (polynomial_g arg = rt.top()->as<polynomial>())
if (polynomial_p result = op(arg))
if (rt.top(result))
return true;
return false;
}
static bool polynomial_op(size_t depth,
polynomial_p (*op)(polynomial_r x, polynomial_r y))
// ----------------------------------------------------------------------------
// Binary operation
// ----------------------------------------------------------------------------
{
if (rt.depth() - depth >= 2)
if (polynomial_g x = rt.pop()->as<polynomial>())
if (polynomial_g y = rt.top()->as<polynomial>())
if (polynomial_p result = op(y, x))
if (rt.top(result))
return true;
return false;
}
static bool polynomial_op(size_t depth,
polynomial_p (*op)(polynomial_r y, integer_r x),
integer_r xi)
// ----------------------------------------------------------------------------
// Binary power operation
// ----------------------------------------------------------------------------
{
if (xi)
if (rt.depth() - depth >= 2)
if (polynomial_g x = rt.pop()->as<polynomial>())
if (polynomial_g y = rt.top()->as<polynomial>())
if (polynomial_p result = op(y, xi))
if (rt.top(result))
return true;
return false;
}
static bool polynomial_op(size_t depth,
polynomial_p (*op)(polynomial_r y, ularge x),
ularge xi)
// ----------------------------------------------------------------------------
// Binary power operation
// ----------------------------------------------------------------------------
{
if (rt.depth() - depth >= 1)
if (polynomial_g y = rt.top()->as<polynomial>())
if (polynomial_p result = op(y, xi))
if (rt.top(result))
return true;
return false;
}
polynomial_p polynomial::make(expression_p expr, bool error)
// ----------------------------------------------------------------------------
// Check if an expression has the right structure for a polynomial
// ----------------------------------------------------------------------------
{
// If the expression is already a polynomial, return it
if (!expr || expr->type() == ID_polynomial)
return polynomial_p(expr);
if (expr->type() != ID_expression)
{
if (error)
rt.type_error();
return nullptr;
}
// First check that what we have is compatible with expectations
size_t depth = rt.depth();
integer_g power = nullptr;
for (object_p obj : *expr)
{
ASSERT(obj && "We must have valid objects in expressions");
id ty = obj->type();
// Save integer exponents for `pow`
if (ty == ID_integer)
power = integer_p(obj);
else if (ty != ID_pow)
power = nullptr;
// Check which types are valid in a polynomial
if (is_real(ty) || (ty == ID_polar || ty == ID_rectangular))
{
algebraic_g arg = algebraic_p(obj);
polynomial_g poly = make(arg);
if (!poly)
goto error;
rt.push(+poly);
}
else if (ty == ID_symbol)
{
symbol_g sym = symbol_p(obj);
polynomial_g poly = make(sym);
if (!poly)
goto error;
rt.push(+poly);
}
else if (ty == ID_neg)
{
if (!polynomial_op(depth, neg))
goto error;
}
else if (ty == ID_add)
{
if (!polynomial_op(depth, add))
goto error;
}
else if (ty == ID_subtract)
{
if (!polynomial_op(depth, sub))
goto error;
}
else if (ty == ID_multiply)
{
if (!polynomial_op(depth, mul))
goto error;
}
else if (ty == ID_pow)
{
if (!polynomial_op(depth, pow, power))
goto error;
}
else if (ty == ID_sq)
{
if (!polynomial_op(depth, pow, 2))
goto error;
}
else if (ty == ID_cubed)
{
if (!polynomial_op(depth, pow, 3))
goto error;
}
else
{
// All other operators are invalid in a polynom
if (error)
rt.value_error();
goto error;
}
}
if (rt.depth() == depth + 1)
if (polynomial_p result = rt.pop()->as<polynomial>())
return result;
error:
// Case where we had an error: drop anything we pushed on the stack
if (size_t removing = rt.depth() - depth)
rt.drop(removing);
return nullptr;
}
byte *polynomial::copy_variables(polynomial_r x, byte *prev)
// ----------------------------------------------------------------------------
// Copy variables from an existing polynomial, return pointer at end
// ----------------------------------------------------------------------------
{
if (!x)
return nullptr;
gcmbytes gprev = prev;
size_t ovars = prev ? leb128<size_t>(prev) : 0;
size_t ovoffs = prev - +gprev;
byte_p xp = x->payload();
size_t xsz = leb128<size_t>(xp);
size_t nvars = leb128<size_t>(xp);
size_t offset = xp - byte_p(+x);
// Insert variables in copy
for (size_t v = 0; v < nvars; v++)
{
if (offset >= xsz)
return nullptr;
// Scan next variable in polynomial x
xp = byte_p(+x) + offset;
size_t vlen = leb128<size_t>(xp);
// Check if a copy of that variable already exists
byte_p old = nullptr;
int cmp = -1;
if (prev)
{
// Restart from beginning of variables
prev = gprev + ovoffs;
for (size_t ov = 0; ov < ovars; ov++)
{
byte_p oldvar = prev;
size_t ovlen = leb128<size_t>(prev);
cmp = symbol::compare(prev, xp, std::min(ovlen, vlen));
if (cmp >= 0)
{
old = oldvar;
if (cmp == 0)
cmp = ovlen - vlen;
break;
}
prev += ovlen;
}
}
size_t vsz = leb128size(vlen) + vlen;
if (cmp)
{
// Size needed for variable
size_t offs = old - +gprev;
bool vszchg = !prev || leb128size(ovars + 1) != leb128size(ovars);
byte *copy = rt.allocate(vsz + vszchg);
if (!copy)
return nullptr;
ovars++;
if (!prev)
{
gprev = prev = copy;
copy = (byte *) leb128(+gprev, ovars);
}
else
{
if (vszchg)
memmove((byte *) +gprev + 1, +gprev, copy - +gprev);
leb128(+gprev, ovars);
}
if (!old)
{
memcpy(copy, byte_p(+x) + offset, vsz);
}
else
{
old = +gprev + offs;
size_t copysz = copy - old;
memmove((byte *) old + vsz, old, copysz);
memcpy((byte *) old, byte_p(+x) + offset, vsz);
}
}
offset += vsz;
}
if (!gprev)
{
byte *p = rt.allocate(1);
if (p)
*p = 0;
gprev = p;
}
return (byte *) +gprev;
}
polynomial_p polynomial::neg(polynomial_r x)
// ----------------------------------------------------------------------------
// Negate a polynomial by negating the constant in all terms
// ----------------------------------------------------------------------------
{
if (!x)
return nullptr;
scribble scr;
gcbytes polycopy = copy_variables(x);
size_t nvars = x->variables();
for (auto term : *x)
{
algebraic_g factor = term.factor();
factor = -factor;
size_t sz = factor->size();
byte *np = rt.allocate(sz);
if (!np)
return nullptr;
memcpy(np, +factor, sz);
for (size_t v = 0; v < nvars; v++)
{
ularge exponent = term.exponent();
byte *ep = rt.allocate(leb128size(exponent));
if (!ep)
return nullptr;
leb128(ep, exponent);
}
}
gcbytes data = scr.scratch();
size_t datasz = scr.growth();
return rt.make<polynomial>(data, datasz);
}
polynomial_p polynomial::addsub(polynomial_r x, polynomial_r y, bool sub)
// ----------------------------------------------------------------------------
// Add or subtract two polynomials
// ----------------------------------------------------------------------------
{
if (!x || !y)
return nullptr;
scribble scr;
gcbytes result = copy_variables(x);
if (!result) // Special case of empty x
rt.free(scr.growth());
result = copy_variables(y, (byte *) +result);
if (!result)
return nullptr;
byte_p p = +result;
size_t nvars = leb128<size_t>(p);
size_t xvars = x->variables();
size_t yvars = y->variables();
ularge xexp[nvars];
ularge yexp[nvars];
size_t xvar[xvars];
size_t yvar[yvars];
// Map variables in x and y to variables in the result
for (size_t v = 0; v < nvars; v++)
{
size_t nlen = leb128<size_t>(p);
for (size_t xv = 0; xv < xvars; xv++)
{
size_t xlen = 0;
utf8 xname = x->variable(xv, &xlen);
if (xlen == nlen && symbol::compare(xname, p, xlen) == 0)
xvar[xv] = v;
}
for (size_t yv = 0; yv < yvars; yv++)
{
size_t ylen = 0;
utf8 yname = y->variable(yv, &ylen);
if (ylen == nlen && symbol::compare(yname, p, ylen) == 0)
yvar[yv] = v;
}
p += nlen;
}
// Add all the terms in X
for (auto xterm : *x)
{
for (size_t v = 0; v < nvars; v++)
xexp[v] = 0;
// Computer the factor of the variables in polynomial x
algebraic_g xfactor = xterm.factor();
for (size_t xv = 0; xv < xvars; xv++)
xexp[xvar[xv]] = xterm.exponent();
// Check if we have the same factors in polynomial y
for (auto yterm : *y)
{
for (size_t v = 0; v < nvars; v++)
yexp[v] = 0;
algebraic_g yfactor = yterm.factor();
for (size_t yv = 0; yv < yvars; yv++)
yexp[yvar[yv]] = yterm.exponent();
bool sameexps = true;
for (size_t v = 0; sameexps && v < nvars; v++)
sameexps = xexp[v] == yexp[v];
if (sameexps)
xfactor = sub ? xfactor - yfactor : xfactor + yfactor;
}
if (!xfactor)
return nullptr;
if (!xfactor->is_zero(false))
{
size_t sz = xfactor->size();
byte *p = rt.allocate(sz);
if (!p)
return nullptr;
memcpy(p, +xfactor, sz);
p += sz;
for (size_t v = 0; v < nvars; v++)
{
p = rt.allocate(leb128size(xexp[v]));
if (!p)
return nullptr;
leb128(p, xexp[v]);
}
}
}
// Add all the terms in Y
for (auto yterm : *y)
{
for (size_t v = 0; v < nvars; v++)
yexp[v] = 0;
// Compute the factor of the variables in polynomial y
algebraic_g yfactor = yterm.factor();
for (size_t yv = 0; yv < yvars; yv++)
yexp[yvar[yv]] = yterm.exponent();
// Check if we have the same factors in polynomial X
for (auto xterm : *x)
{
for (size_t v = 0; v < nvars; v++)
xexp[v] = 0;
algebraic_g xfactor = xterm.factor();
for (size_t xv = 0; xv < xvars; xv++)
xexp[xvar[xv]] = xterm.exponent();
bool sameexps = true;
for (size_t v = 0; sameexps && v < nvars; v++)
sameexps = xexp[v] == yexp[v];
if (sameexps)
yfactor = nullptr; // Already done in the X loop
}
if (yfactor && !yfactor->is_zero(false))
{
if (sub)
yfactor = -yfactor;
size_t sz = yfactor->size();
byte *p = rt.allocate(sz);
if (!p)
return nullptr;
memcpy(p, +yfactor, sz);
p += sz;
for (size_t v = 0; v < nvars; v++)
{
p = rt.allocate(leb128size(yexp[v]));
if (!p)
return nullptr;
leb128(p, yexp[v]);
}
}
}
gcbytes data = scr.scratch();
size_t datasz = scr.growth();
return rt.make<polynomial>(data, datasz);
}
polynomial_p polynomial::add(polynomial_r x, polynomial_r y)
// ----------------------------------------------------------------------------
// Add two polynomials
// ----------------------------------------------------------------------------
{
return addsub(x, y, false);
}
polynomial_p polynomial::sub(polynomial_r x, polynomial_r y)
// ----------------------------------------------------------------------------
// Subtract two polynomials
// ----------------------------------------------------------------------------
{
return addsub(x, y, true);
}
polynomial_p polynomial::mul(polynomial_r x, polynomial_r y)
// ----------------------------------------------------------------------------
// Multiply two polynomials
// ----------------------------------------------------------------------------
{
if (!x || !y)
return nullptr;
scribble scr;
gcbytes result = copy_variables(x);
if (!result)
rt.free(scr.growth());
result = copy_variables(y, (byte *) +result);
if (!result)
return nullptr;
byte_p p = +result;
size_t nvars = leb128<size_t>(p);
size_t xvars = x->variables();
size_t yvars = y->variables();
ularge xexp[nvars];
ularge yexp[nvars];
size_t xvar[xvars];
size_t yvar[yvars];
// Map variables in x and y to variables in the result
for (size_t v = 0; v < nvars; v++)
{
size_t nlen = leb128<size_t>(p);
for (size_t xv = 0; xv < xvars; xv++)
{
size_t xlen = 0;
utf8 xname = x->variable(xv, &xlen);
if (xlen == nlen && symbol::compare(xname, p, xlen) == 0)
xvar[xv] = v;
}
for (size_t yv = 0; yv < yvars; yv++)
{
size_t ylen = 0;
utf8 yname = y->variable(yv, &ylen);
if (ylen == nlen && symbol::compare(yname, p, ylen) == 0)
yvar[yv] = v;
}
p += nlen;
}
// Loop over all the terms in X
gcbytes terms = p;
for (auto xterm : *x)
{
for (size_t v = 0; v < nvars; v++)
xexp[v] = 0;
// Computer the factor of the variables in polynomial x
algebraic_g xfactor = xterm.factor();
for (size_t xv = 0; xv < xvars; xv++)
xexp[xvar[xv]] = xterm.exponent();
// Check if we have the same factors in polynomial y
for (auto yterm : *y)
{
for (size_t v = 0; v < nvars; v++)
yexp[v] = 0;
algebraic_g yfactor = yterm.factor();
for (size_t yv = 0; yv < yvars; yv++)
yexp[yvar[yv]] = yterm.exponent();
algebraic_g rfactor = xfactor * yfactor;
if (!rfactor)
return nullptr;
if (!rfactor->is_zero(false))
{
// Check if there is an existing term with same exponents
gcbytes end = rt.allocate(0);
byte_p next = end;
for (byte_p check = terms; check < end; check = next)
{
algebraic_g existing = algebraic_p(check);
bool sameexps = true;
byte_p expp = byte_p(existing->skip());
for (size_t v = 0; v < nvars; v++)
{
ularge eexp = leb128<size_t>(expp);
if (eexp != xexp[v] + yexp[v])
sameexps = false;
}
next = expp;
if (sameexps)
{
size_t remove = size_t(expp - check);
rfactor = rfactor + existing;
memmove((byte *) +existing,
byte_p(existing) + remove,
end - byte_p(+existing));
rt.free(remove);
break;
}
}
}
if (!rfactor->is_zero(false))
{
size_t sz = rfactor->size();
byte *p = rt.allocate(sz);
if (!p)
return nullptr;
memcpy(p, +rfactor, sz);
p += sz;
for (size_t v = 0; v < nvars; v++)
{
ularge exp = xexp[v] + yexp[v];
p = rt.allocate(leb128size(exp));
p = leb128(p, exp);
}
}
}
}
gcbytes data = scr.scratch();
size_t datasz = scr.growth();
return rt.make<polynomial>(data, datasz);
}
polynomial_p polynomial::div(polynomial_r x, polynomial_r y)
// ----------------------------------------------------------------------------
// Euclidean divide of polynomials
// ----------------------------------------------------------------------------
{
polynomial_g q, r;
if (quorem(x, y, q, r))
return q;
return nullptr;
}
polynomial_p polynomial::mod(polynomial_r x, polynomial_r y)
// ----------------------------------------------------------------------------
// Euclidean remainder of polynomials
// ----------------------------------------------------------------------------
{
polynomial_g q, r;
if (quorem(x, y, q, r))
return r;
return nullptr;
}
bool polynomial::quorem(polynomial_r x,
polynomial_r y,
polynomial_g &q,
polynomial_g &r)
// ----------------------------------------------------------------------------
// Quotient and remainder of two polynomials
// ----------------------------------------------------------------------------
// The quotient is computed based on the polynomial::main_variable
//
// Consider x = A^3-B^3 and y=A-B
// We start with q=0, r=(A^3-B^3) and y=A-B
//
// q r high R ratio HR/HY prod
//
// 0 A^3-B^3 A^3 A^2 A^3-A^2*B
// A^2 A^2*B-B^3 A^2*B A*B A^2*B-A*B^2
// A^2+A*B A*B^2-B^3 A*B^2 B^2 A*B^2-B^3
// A^2+A*B+B^2 0 0
//
//
// Consider x=A^3+B^3 and y=A-B
// q r high R ratio HR/HY prod
//
// 0 A^3+B^3 A^3 A^2 A^3+A^2*B
// A^2 A^2*B+B^3 A^2*B A*B A^2*B+A*B^2
// A^2+A*B -A*B^2+B^3 -A*B^2 -B^2 -A*B^2+B^3
// A^2+A*B+B^2 2*B^3 0
//
{
if (!x || !y)
return false;
// Initial remainder and quotient
r = x;
q = polynomial::make(integer::make(0));
if (!q)
return false;
// Find highest rank in the terms
symbol_g var = main_variable();
size_t rvar = r->variable(+var);
size_t yvar = y->variable(+var);
iterator ri = r->ranking(rvar);
iterator yi = y->ranking(yvar);
ularge rorder = ri.rank(rvar);
ularge yorder = yi.rank(yvar);
symbol_g rvars[ri.variables];
for (size_t rv = 0; rv < ri.variables; rv++)
rvars[rv] = r->variable(rv);
while (rorder >= yorder && yi != y->end())
{
iterator yterm = yi;
algebraic_g yf = yterm.factor();
// Compute term factor for ratio of highest-ranking terms in var
polynomial_g rpoly = polynomial::make(integer::make(0));
for (auto rterm : *r)
{
algebraic_g rf = rterm.factor();
polynomial_g ratio = polynomial::make(rf / yf);
if (!ratio)
return false;
bool match = true;
for (size_t rv = 0; rv < rterm.variables; rv++)
{
ularge rexp = rterm.exponent();
if (rv == rvar)
{
match = rexp == rorder;
rexp = rorder - yorder;
}
if (match)
{
algebraic_g rf = integer::make(1);
polynomial_g rp = polynomial::make(rf, rvars[rv], rexp);
ratio = mul(ratio, rp);
if (!ratio)
return false;
}
}
if (match)
{
rpoly = add(rpoly, ratio);
if (!rpoly)
return false;
}
}
q = add(q, rpoly);
rpoly = mul(rpoly, y);
r = sub(r, rpoly);
if (!r)
return false;
// Restart with rest
rvar = r->variable(+var);
ri = r->ranking(rvar);
rorder = ri.rank(rvar);
}
return true;
}
polynomial_p polynomial::pow(polynomial_r x, integer_r y)
// ----------------------------------------------------------------------------
// Elevate a polynomial to some integer power
// ----------------------------------------------------------------------------
{
if (!x || !y)
return nullptr;
ularge exp = y->value<ularge>();
return pow(x, exp);
}
polynomial_p polynomial::pow(polynomial_r x, ularge exp)
// ----------------------------------------------------------------------------
// Elevate a polynomial to some integer power
// ----------------------------------------------------------------------------
{
polynomial_g r = nullptr;
polynomial_g m = x;
while (exp)
{
if (exp & 1)
{
r = r ? mul(r, m) : +m;
if (!r)
return nullptr;
}
m = mul(m, m);
if (!m)
return nullptr;
exp >>= 1;
}
if (!r)
{
algebraic_g one = integer::make(1);
r = polynomial::make(one);
}
return r;
}
size_t polynomial::variables() const
// ----------------------------------------------------------------------------
// Return the number of variables
// ----------------------------------------------------------------------------
{
byte_p first = byte_p(this);
byte_p p = payload();
size_t length = leb128<size_t>(p);
size_t nvars = leb128<size_t>(p);
return (size_t(p - first) < length) ? nvars : 0;
}
symbol_g polynomial::variable(size_t index) const
// ----------------------------------------------------------------------------
// Return the variable at the given index as a symbol
// ----------------------------------------------------------------------------
{
size_t len = 0;
utf8 p = variable(index, &len);
return symbol::make(p, len);
}
utf8 polynomial::variable(size_t index, size_t *len) const
// ----------------------------------------------------------------------------
// Return the variable at the given index as a symbol
// ----------------------------------------------------------------------------
{
byte_p first = byte_p(this);
byte_p p = payload();
size_t length = leb128<size_t>(p);
size_t nvars = leb128<size_t>(p);
if (index >= nvars)
return nullptr;
for (size_t v = 0; v < index; v++)
{
size_t vlen = leb128<size_t>(p);
p += vlen;
}
if (size_t(p - first) >= length)
return nullptr;
size_t vlen = leb128<size_t>(p);
if (len)
*len = vlen;
return p;
}
size_t polynomial::variable(utf8 name, size_t len) const
// ----------------------------------------------------------------------------
// Find a variable by name
// ----------------------------------------------------------------------------
{
byte_p first = byte_p(this);
byte_p p = payload();
size_t length = leb128<size_t>(p);
size_t nvars = leb128<size_t>(p);
for (size_t v = 0; v < nvars; v++)
{
size_t vlen = leb128<size_t>(p);
if (vlen == len && symbol::compare(p, name, len) == 0)
return v;
p += vlen;
if (size_t(p - first) >= length)
break;
}
return ~0U;
}
size_t polynomial::variable(symbol_p sym) const
// ----------------------------------------------------------------------------
// Find a variable by name
// ----------------------------------------------------------------------------
{
if (!sym)
return ~0UL;
size_t len = 0;
utf8 name = sym->value(&len);
return variable(name, len);
}
ularge polynomial::order(size_t *var) const
// ----------------------------------------------------------------------------
// Compute the order of a polynomial, as the highest exponent of any variable
// ----------------------------------------------------------------------------
{
iterator where = ranking(var);
size_t mainvar = 0;
ularge maxexp = 0;
if (where != end())
{
algebraic_g factor = where.factor();
for (size_t v = 0; v < where.variables; v++)
{