-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnls.c
589 lines (512 loc) · 12.6 KB
/
nnls.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#include "nnls.h"
/*
NNLS-Chroma / Chordino
This file is converted from the Netlib FORTRAN code NNLS.FOR,
developed by Charles L. Lawson and Richard J. Hanson at Jet
Propulsion Laboratory 1973 JUN 15, and published in the book
"SOLVING LEAST SQUARES PROBLEMS", Prentice-Hall, 1974.
Refer to nnls.f for the original code and comments.
*/
#include <math.h>
#define nnls_max(a,b) ((a) >= (b) ? (a) : (b))
#define nnls_abs(x) ((x) >= 0 ? (x) : -(x))
float d_sign(float a, float b)
{
float x;
x = (a >= 0 ? a : - a);
return (b >= 0 ? x : -x);
}
/* Table of constant values */
int c__1 = 1;
int c__0 = 0;
int c__2 = 2;
int g1(float* a, float* b, float* cterm, float* sterm, float* sig)
{
/* System generated locals */
float d;
float xr, yr;
if (nnls_abs(*a) > nnls_abs(*b)) {
xr = *b / *a;
/* Computing 2nd power */
d = xr;
yr = sqrt(d * d + 1.);
d = 1. / yr;
*cterm = d_sign(d, *a);
*sterm = *cterm * xr;
*sig = nnls_abs(*a) * yr;
return 0;
}
if (*b != 0.) {
xr = *a / *b;
/* Computing 2nd power */
d = xr;
yr = sqrt(d * d + 1.);
d = 1. / yr;
*sterm = d_sign(d, *b);
*cterm = *sterm * xr;
*sig = nnls_abs(*b) * yr;
return 0;
}
*sig = 0.;
*cterm = 0.;
*sterm = 1.;
return 0;
} /* g1_ */
int h12(int mode, int* lpivot, int* l1,
int m, float* u, int* iue, float* up, float* c__,
int* ice, int* icv, int* ncv)
{
/* System generated locals */
int u_dim1, u_offset, idx1, idx2;
float d, d2;
/* Local variables */
int incr;
float b;
int i__, j;
float clinv;
int i2, i3, i4;
float cl, sm;
/* ------------------------------------------------------------------
*/
/* float precision U(IUE,M) */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
u_dim1 = *iue;
u_offset = u_dim1 + 1;
u -= u_offset;
--c__;
/* Function Body */
if (0 >= *lpivot || *lpivot >= *l1 || *l1 > m) {
return 0;
}
cl = (d = u[*lpivot * u_dim1 + 1], nnls_abs(d));
if (mode == 2) {
goto L60;
}
/* ****** CONSTRUCT THE TRANSFORMATION. ******
*/
idx1 = m;
for (j = *l1; j <= idx1; ++j) {
/* L10: */
/* Computing MAX */
d2 = (d = u[j * u_dim1 + 1], nnls_abs(d));
cl = nnls_max(d2,cl);
}
if (cl <= 0.) {
goto L130;
} else {
goto L20;
}
L20:
clinv = 1. / cl;
/* Computing 2nd power */
d = u[*lpivot * u_dim1 + 1] * clinv;
sm = d * d;
idx1 = m;
for (j = *l1; j <= idx1; ++j) {
/* L30: */
/* Computing 2nd power */
d = u[j * u_dim1 + 1] * clinv;
sm += d * d;
}
cl *= sqrt(sm);
if (u[*lpivot * u_dim1 + 1] <= 0.) {
goto L50;
} else {
goto L40;
}
L40:
cl = -cl;
L50:
*up = u[*lpivot * u_dim1 + 1] - cl;
u[*lpivot * u_dim1 + 1] = cl;
goto L70;
/* ****** APPLY THE TRANSFORMATION I+U*(U**T)/B TO C. ******
*/
L60:
if (cl <= 0.) {
goto L130;
} else {
goto L70;
}
L70:
if (*ncv <= 0) {
return 0;
}
b = *up * u[*lpivot * u_dim1 + 1];
/* B MUST BE NONPOSITIVE HERE. IF B = 0., RETURN.
*/
if (b >= 0.) {
goto L130;
} else {
goto L80;
}
L80:
b = 1. / b;
i2 = 1 - *icv + *ice * (*lpivot - 1);
incr = *ice * (*l1 - *lpivot);
idx1 = *ncv;
for (j = 1; j <= idx1; ++j) {
i2 += *icv;
i3 = i2 + incr;
i4 = i3;
sm = c__[i2] * *up;
idx2 = m;
for (i__ = *l1; i__ <= idx2; ++i__) {
sm += c__[i3] * u[i__ * u_dim1 + 1];
/* L90: */
i3 += *ice;
}
if (sm != 0.) {
goto L100;
} else {
goto L120;
}
L100:
sm *= b;
c__[i2] += sm * *up;
idx2 = m;
for (i__ = *l1; i__ <= idx2; ++i__) {
c__[i4] += sm * u[i__ * u_dim1 + 1];
/* L110: */
i4 += *ice;
}
L120:
;
}
L130:
return 0;
} /* h12 */
int nnls(float* a, int mda, int m, int n, float* b,
float* x, float* rnorm, float* w, float* zz, int* index,
int* mode)
{
/* System generated locals */
int a_dim1, a_offset, idx1, idx2;
float d1, d2;
/* Local variables */
int iter;
float temp, wmax;
int i__, j, l;
float t, alpha, asave;
int itmax, izmax = 0, nsetp;
float unorm, ztest, cc;
float dummy[2];
int ii, jj, ip;
float sm;
int iz, jz;
float up, ss;
int rtnkey, iz1, iz2, npp1;
/* ------------------------------------------------------------------
*/
/* int INDEX(N) */
/* float precision A(MDA,N), B(M), W(N), X(N), ZZ(M) */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
a_dim1 = mda;
a_offset = a_dim1 + 1;
a -= a_offset;
--b;
--x;
--w;
--zz;
--index;
/* Function Body */
*mode = 1;
if (m <= 0 || n <= 0) {
*mode = 2;
return 0;
}
iter = 0;
itmax = n * 3;
/* INITIALIZE THE ARRAYS INDEX() AND X(). */
idx1 = n;
for (i__ = 1; i__ <= idx1; ++i__) {
x[i__] = 0.;
/* L20: */
index[i__] = i__;
}
iz2 = n;
iz1 = 1;
nsetp = 0;
npp1 = 1;
/* ****** MAIN LOOP BEGINS HERE ****** */
L30:
/* QUIT IF ALL COEFFICIENTS ARE ALREADY IN THE SOLUTION.
*/
/* OR IF M COLS OF A HAVE BEEN TRIANGULARIZED. */
if (iz1 > iz2 || nsetp >= m) {
goto L350;
}
/* COMPUTE COMPONENTS OF THE DUAL (NEGATIVE GRADIENT) VECTOR W().
*/
idx1 = iz2;
for (iz = iz1; iz <= idx1; ++iz) {
j = index[iz];
sm = 0.;
idx2 = m;
for (l = npp1; l <= idx2; ++l) {
/* L40: */
sm += a[l + j * a_dim1] * b[l];
}
w[j] = sm;
/* L50: */
}
/* FIND LARGEST POSITIVE W(J). */
L60:
wmax = 0.;
idx1 = iz2;
for (iz = iz1; iz <= idx1; ++iz) {
j = index[iz];
if (w[j] > wmax) {
wmax = w[j];
izmax = iz;
}
/* L70: */
}
/* IF WMAX .LE. 0. GO TO TERMINATION. */
/* THIS INDICATES SATISFACTION OF THE KUHN-TUCKER CONDITIONS.
*/
if (wmax <= 0.) {
goto L350;
}
iz = izmax;
j = index[iz];
/* THE SIGN OF W(J) IS OK FOR J TO BE MOVED TO SET P. */
/* BEGIN THE TRANSFORMATION AND CHECK NEW DIAGONAL ELEMENT TO AVOID */
/* NEAR LINEAR DEPENDENCE. */
asave = a[npp1 + j * a_dim1];
idx1 = npp1 + 1;
h12(c__1, &npp1, &idx1, m, &a[j * a_dim1 + 1], &c__1, &up, dummy, &
c__1, &c__1, &c__0);
unorm = 0.;
if (nsetp != 0) {
idx1 = nsetp;
for (l = 1; l <= idx1; ++l) {
/* L90: */
/* Computing 2nd power */
d1 = a[l + j * a_dim1];
unorm += d1 * d1;
}
}
unorm = sqrt(unorm);
d2 = unorm + (d1 = a[npp1 + j * a_dim1], nnls_abs(d1)) * .01;
if ((d2- unorm) > 0.) {
/* COL J IS SUFFICIENTLY INDEPENDENT. COPY B INTO ZZ, UPDATE Z
Z */
/* AND SOLVE FOR ZTEST ( = PROPOSED NEW VALUE FOR X(J) ). */
idx1 = m;
for (l = 1; l <= idx1; ++l) {
/* L120: */
zz[l] = b[l];
}
idx1 = npp1 + 1;
h12(c__2, &npp1, &idx1, m, &a[j * a_dim1 + 1], &c__1, &up, (zz+1), &
c__1, &c__1, &c__1);
ztest = zz[npp1] / a[npp1 + j * a_dim1];
/* SEE IF ZTEST IS POSITIVE */
if (ztest > 0.) {
goto L140;
}
}
/* REJECT J AS A CANDIDATE TO BE MOVED FROM SET Z TO SET P. */
/* RESTORE A(NPP1,J), SET W(J)=0., AND LOOP BACK TO TEST DUAL */
/* COEFFS AGAIN. */
a[npp1 + j * a_dim1] = asave;
w[j] = 0.;
goto L60;
/* THE INDEX J=INDEX(IZ) HAS BEEN SELECTED TO BE MOVED FROM */
/* SET Z TO SET P. UPDATE B, UPDATE INDICES, APPLY HOUSEHOLDER */
/* TRANSFORMATIONS TO COLS IN NEW SET Z, ZERO SUBDIAGONAL ELTS IN */
/* COL J, SET W(J)=0. */
L140:
idx1 = m;
for (l = 1; l <= idx1; ++l) {
/* L150: */
b[l] = zz[l];
}
index[iz] = index[iz1];
index[iz1] = j;
++iz1;
nsetp = npp1;
++npp1;
if (iz1 <= iz2) {
idx1 = iz2;
for (jz = iz1; jz <= idx1; ++jz) {
jj = index[jz];
h12(c__2, &nsetp, &npp1, m,
&a[j * a_dim1 + 1], &c__1, &up,
&a[jj * a_dim1 + 1], &c__1, &mda, &c__1);
/* L160: */
}
}
if (nsetp != m) {
idx1 = m;
for (l = npp1; l <= idx1; ++l) {
/* L180: */
// SS: CHECK THIS DAMAGE....
a[l + j * a_dim1] = 0.;
}
}
w[j] = 0.;
/* SOLVE THE TRIANGULAR SYSTEM. */
/* STORE THE SOLUTION TEMPORARILY IN ZZ().
*/
rtnkey = 1;
goto L400;
L200:
/* ****** SECONDARY LOOP BEGINS HERE ****** */
/* ITERATION COUNTER. */
L210:
++iter;
if (iter > itmax) {
*mode = 3;
goto L350;
}
/* SEE IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE. */
/* IF NOT COMPUTE ALPHA. */
alpha = 2.;
idx1 = nsetp;
for (ip = 1; ip <= idx1; ++ip) {
l = index[ip];
if (zz[ip] <= 0.) {
t = -x[l] / (zz[ip] - x[l]);
if (alpha > t) {
alpha = t;
jj = ip;
}
}
/* L240: */
}
/* IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE THEN ALPHA WILL */
/* STILL = 2. IF SO EXIT FROM SECONDARY LOOP TO MAIN LOOP. */
if (alpha == 2.) {
goto L330;
}
/* OTHERWISE USE ALPHA WHICH WILL BE BETWEEN 0. AND 1. TO */
/* INTERPOLATE BETWEEN THE OLD X AND THE NEW ZZ. */
idx1 = nsetp;
for (ip = 1; ip <= idx1; ++ip) {
l = index[ip];
x[l] += alpha * (zz[ip] - x[l]);
/* L250: */
}
/* MODIFY A AND B AND THE INDEX ARRAYS TO MOVE COEFFICIENT I */
/* FROM SET P TO SET Z. */
i__ = index[jj];
L260:
x[i__] = 0.;
if (jj != nsetp) {
++jj;
idx1 = nsetp;
for (j = jj; j <= idx1; ++j) {
ii = index[j];
index[j - 1] = ii;
g1(&a[j - 1 + ii * a_dim1], &a[j + ii * a_dim1],
&cc, &ss, &a[j - 1 + ii * a_dim1]);
// SS: CHECK THIS DAMAGE...
a[j + ii * a_dim1] = 0.;
idx2 = n;
for (l = 1; l <= idx2; ++l) {
if (l != ii) {
/* Apply procedure G2 (CC,SS,A(J-1,L),A(J,
L)) */
temp = a[j - 1 + l * a_dim1];
// SS: CHECK THIS DAMAGE
a[j - 1 + l * a_dim1] = cc * temp + ss * a[j + l * a_dim1];
a[j + l * a_dim1] = -ss * temp + cc * a[j + l * a_dim1];
}
/* L270: */
}
/* Apply procedure G2 (CC,SS,B(J-1),B(J)) */
temp = b[j - 1];
b[j - 1] = cc * temp + ss * b[j];
b[j] = -ss * temp + cc * b[j];
/* L280: */
}
}
npp1 = nsetp;
--nsetp;
--iz1;
index[iz1] = i__;
/* SEE IF THE REMAINING COEFFS IN SET P ARE FEASIBLE. THEY SHOULD
*/
/* BE BECAUSE OF THE WAY ALPHA WAS DETERMINED. */
/* IF ANY ARE INFEASIBLE IT IS DUE TO ROUND-OFF ERROR. ANY */
/* THAT ARE NONPOSITIVE WILL BE SET TO ZERO */
/* AND MOVED FROM SET P TO SET Z. */
idx1 = nsetp;
for (jj = 1; jj <= idx1; ++jj) {
i__ = index[jj];
if (x[i__] <= 0.) {
goto L260;
}
/* L300: */
}
/* COPY B( ) INTO ZZ( ). THEN SOLVE AGAIN AND LOOP BACK. */
idx1 = m;
for (i__ = 1; i__ <= idx1; ++i__) {
/* L310: */
zz[i__] = b[i__];
}
rtnkey = 2;
goto L400;
L320:
goto L210;
/* ****** END OF SECONDARY LOOP ****** */
L330:
idx1 = nsetp;
for (ip = 1; ip <= idx1; ++ip) {
i__ = index[ip];
/* L340: */
x[i__] = zz[ip];
}
/* ALL NEW COEFFS ARE POSITIVE. LOOP BACK TO BEGINNING. */
goto L30;
/* ****** END OF MAIN LOOP ****** */
/* COME TO HERE FOR TERMINATION. */
/* COMPUTE THE NORM OF THE FINAL RESIDUAL VECTOR. */
L350:
sm = 0.;
if (npp1 <= m) {
idx1 = m;
for (i__ = npp1; i__ <= idx1; ++i__) {
/* L360: */
/* Computing 2nd power */
d1 = b[i__];
sm += d1 * d1;
}
} else {
idx1 = n;
for (j = 1; j <= idx1; ++j) {
/* L380: */
w[j] = 0.;
}
}
*rnorm = sqrt(sm);
return 0;
/* THE FOLLOWING BLOCK OF CODE IS USED AS AN INTERNAL SUBROUTINE */
/* TO SOLVE THE TRIANGULAR SYSTEM, PUTTING THE SOLUTION IN ZZ(). */
L400:
idx1 = nsetp;
for (l = 1; l <= idx1; ++l) {
ip = nsetp + 1 - l;
if (l != 1) {
idx2 = ip;
for (ii = 1; ii <= idx2; ++ii) {
zz[ii] -= a[ii + jj * a_dim1] * zz[ip + 1];
/* L410: */
}
}
jj = index[ip];
zz[ip] /= a[ip + jj * a_dim1];
/* L430: */
}
switch ((int)rtnkey) {
case 1: goto L200;
case 2: goto L320;
}
return 0;
} /* nnls_ */