forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.txt
1467 lines (1227 loc) · 56.9 KB
/
filter.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Linux Socket Filtering aka Berkeley Packet Filter (BPF)
=======================================================
Introduction
------------
Linux Socket Filtering (LSF) is derived from the Berkeley Packet Filter.
Though there are some distinct differences between the BSD and Linux
Kernel filtering, but when we speak of BPF or LSF in Linux context, we
mean the very same mechanism of filtering in the Linux kernel.
BPF allows a user-space program to attach a filter onto any socket and
allow or disallow certain types of data to come through the socket. LSF
follows exactly the same filter code structure as BSD's BPF, so referring
to the BSD bpf.4 manpage is very helpful in creating filters.
On Linux, BPF is much simpler than on BSD. One does not have to worry
about devices or anything like that. You simply create your filter code,
send it to the kernel via the SO_ATTACH_FILTER option and if your filter
code passes the kernel check on it, you then immediately begin filtering
data on that socket.
You can also detach filters from your socket via the SO_DETACH_FILTER
option. This will probably not be used much since when you close a socket
that has a filter on it the filter is automagically removed. The other
less common case may be adding a different filter on the same socket where
you had another filter that is still running: the kernel takes care of
removing the old one and placing your new one in its place, assuming your
filter has passed the checks, otherwise if it fails the old filter will
remain on that socket.
SO_LOCK_FILTER option allows to lock the filter attached to a socket. Once
set, a filter cannot be removed or changed. This allows one process to
setup a socket, attach a filter, lock it then drop privileges and be
assured that the filter will be kept until the socket is closed.
The biggest user of this construct might be libpcap. Issuing a high-level
filter command like `tcpdump -i em1 port 22` passes through the libpcap
internal compiler that generates a structure that can eventually be loaded
via SO_ATTACH_FILTER to the kernel. `tcpdump -i em1 port 22 -ddd`
displays what is being placed into this structure.
Although we were only speaking about sockets here, BPF in Linux is used
in many more places. There's xt_bpf for netfilter, cls_bpf in the kernel
qdisc layer, SECCOMP-BPF (SECure COMPuting [1]), and lots of other places
such as team driver, PTP code, etc where BPF is being used.
[1] Documentation/userspace-api/seccomp_filter.rst
Original BPF paper:
Steven McCanne and Van Jacobson. 1993. The BSD packet filter: a new
architecture for user-level packet capture. In Proceedings of the
USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993
Conference Proceedings (USENIX'93). USENIX Association, Berkeley,
CA, USA, 2-2. [http://www.tcpdump.org/papers/bpf-usenix93.pdf]
Structure
---------
User space applications include <linux/filter.h> which contains the
following relevant structures:
struct sock_filter { /* Filter block */
__u16 code; /* Actual filter code */
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Generic multiuse field */
};
Such a structure is assembled as an array of 4-tuples, that contains
a code, jt, jf and k value. jt and jf are jump offsets and k a generic
value to be used for a provided code.
struct sock_fprog { /* Required for SO_ATTACH_FILTER. */
unsigned short len; /* Number of filter blocks */
struct sock_filter __user *filter;
};
For socket filtering, a pointer to this structure (as shown in
follow-up example) is being passed to the kernel through setsockopt(2).
Example
-------
#include <sys/socket.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <linux/if_ether.h>
/* ... */
/* From the example above: tcpdump -i em1 port 22 -dd */
struct sock_filter code[] = {
{ 0x28, 0, 0, 0x0000000c },
{ 0x15, 0, 8, 0x000086dd },
{ 0x30, 0, 0, 0x00000014 },
{ 0x15, 2, 0, 0x00000084 },
{ 0x15, 1, 0, 0x00000006 },
{ 0x15, 0, 17, 0x00000011 },
{ 0x28, 0, 0, 0x00000036 },
{ 0x15, 14, 0, 0x00000016 },
{ 0x28, 0, 0, 0x00000038 },
{ 0x15, 12, 13, 0x00000016 },
{ 0x15, 0, 12, 0x00000800 },
{ 0x30, 0, 0, 0x00000017 },
{ 0x15, 2, 0, 0x00000084 },
{ 0x15, 1, 0, 0x00000006 },
{ 0x15, 0, 8, 0x00000011 },
{ 0x28, 0, 0, 0x00000014 },
{ 0x45, 6, 0, 0x00001fff },
{ 0xb1, 0, 0, 0x0000000e },
{ 0x48, 0, 0, 0x0000000e },
{ 0x15, 2, 0, 0x00000016 },
{ 0x48, 0, 0, 0x00000010 },
{ 0x15, 0, 1, 0x00000016 },
{ 0x06, 0, 0, 0x0000ffff },
{ 0x06, 0, 0, 0x00000000 },
};
struct sock_fprog bpf = {
.len = ARRAY_SIZE(code),
.filter = code,
};
sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
if (sock < 0)
/* ... bail out ... */
ret = setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf));
if (ret < 0)
/* ... bail out ... */
/* ... */
close(sock);
The above example code attaches a socket filter for a PF_PACKET socket
in order to let all IPv4/IPv6 packets with port 22 pass. The rest will
be dropped for this socket.
The setsockopt(2) call to SO_DETACH_FILTER doesn't need any arguments
and SO_LOCK_FILTER for preventing the filter to be detached, takes an
integer value with 0 or 1.
Note that socket filters are not restricted to PF_PACKET sockets only,
but can also be used on other socket families.
Summary of system calls:
* setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_FILTER, &val, sizeof(val));
* setsockopt(sockfd, SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val));
* setsockopt(sockfd, SOL_SOCKET, SO_LOCK_FILTER, &val, sizeof(val));
Normally, most use cases for socket filtering on packet sockets will be
covered by libpcap in high-level syntax, so as an application developer
you should stick to that. libpcap wraps its own layer around all that.
Unless i) using/linking to libpcap is not an option, ii) the required BPF
filters use Linux extensions that are not supported by libpcap's compiler,
iii) a filter might be more complex and not cleanly implementable with
libpcap's compiler, or iv) particular filter codes should be optimized
differently than libpcap's internal compiler does; then in such cases
writing such a filter "by hand" can be of an alternative. For example,
xt_bpf and cls_bpf users might have requirements that could result in
more complex filter code, or one that cannot be expressed with libpcap
(e.g. different return codes for various code paths). Moreover, BPF JIT
implementors may wish to manually write test cases and thus need low-level
access to BPF code as well.
BPF engine and instruction set
------------------------------
Under tools/net/ there's a small helper tool called bpf_asm which can
be used to write low-level filters for example scenarios mentioned in the
previous section. Asm-like syntax mentioned here has been implemented in
bpf_asm and will be used for further explanations (instead of dealing with
less readable opcodes directly, principles are the same). The syntax is
closely modelled after Steven McCanne's and Van Jacobson's BPF paper.
The BPF architecture consists of the following basic elements:
Element Description
A 32 bit wide accumulator
X 32 bit wide X register
M[] 16 x 32 bit wide misc registers aka "scratch memory
store", addressable from 0 to 15
A program, that is translated by bpf_asm into "opcodes" is an array that
consists of the following elements (as already mentioned):
op:16, jt:8, jf:8, k:32
The element op is a 16 bit wide opcode that has a particular instruction
encoded. jt and jf are two 8 bit wide jump targets, one for condition
"jump if true", the other one "jump if false". Eventually, element k
contains a miscellaneous argument that can be interpreted in different
ways depending on the given instruction in op.
The instruction set consists of load, store, branch, alu, miscellaneous
and return instructions that are also represented in bpf_asm syntax. This
table lists all bpf_asm instructions available resp. what their underlying
opcodes as defined in linux/filter.h stand for:
Instruction Addressing mode Description
ld 1, 2, 3, 4, 10 Load word into A
ldi 4 Load word into A
ldh 1, 2 Load half-word into A
ldb 1, 2 Load byte into A
ldx 3, 4, 5, 10 Load word into X
ldxi 4 Load word into X
ldxb 5 Load byte into X
st 3 Store A into M[]
stx 3 Store X into M[]
jmp 6 Jump to label
ja 6 Jump to label
jeq 7, 8 Jump on A == k
jneq 8 Jump on A != k
jne 8 Jump on A != k
jlt 8 Jump on A < k
jle 8 Jump on A <= k
jgt 7, 8 Jump on A > k
jge 7, 8 Jump on A >= k
jset 7, 8 Jump on A & k
add 0, 4 A + <x>
sub 0, 4 A - <x>
mul 0, 4 A * <x>
div 0, 4 A / <x>
mod 0, 4 A % <x>
neg !A
and 0, 4 A & <x>
or 0, 4 A | <x>
xor 0, 4 A ^ <x>
lsh 0, 4 A << <x>
rsh 0, 4 A >> <x>
tax Copy A into X
txa Copy X into A
ret 4, 9 Return
The next table shows addressing formats from the 2nd column:
Addressing mode Syntax Description
0 x/%x Register X
1 [k] BHW at byte offset k in the packet
2 [x + k] BHW at the offset X + k in the packet
3 M[k] Word at offset k in M[]
4 #k Literal value stored in k
5 4*([k]&0xf) Lower nibble * 4 at byte offset k in the packet
6 L Jump label L
7 #k,Lt,Lf Jump to Lt if true, otherwise jump to Lf
8 #k,Lt Jump to Lt if predicate is true
9 a/%a Accumulator A
10 extension BPF extension
The Linux kernel also has a couple of BPF extensions that are used along
with the class of load instructions by "overloading" the k argument with
a negative offset + a particular extension offset. The result of such BPF
extensions are loaded into A.
Possible BPF extensions are shown in the following table:
Extension Description
len skb->len
proto skb->protocol
type skb->pkt_type
poff Payload start offset
ifidx skb->dev->ifindex
nla Netlink attribute of type X with offset A
nlan Nested Netlink attribute of type X with offset A
mark skb->mark
queue skb->queue_mapping
hatype skb->dev->type
rxhash skb->hash
cpu raw_smp_processor_id()
vlan_tci skb_vlan_tag_get(skb)
vlan_avail skb_vlan_tag_present(skb)
vlan_tpid skb->vlan_proto
rand prandom_u32()
These extensions can also be prefixed with '#'.
Examples for low-level BPF:
** ARP packets:
ldh [12]
jne #0x806, drop
ret #-1
drop: ret #0
** IPv4 TCP packets:
ldh [12]
jne #0x800, drop
ldb [23]
jneq #6, drop
ret #-1
drop: ret #0
** (Accelerated) VLAN w/ id 10:
ld vlan_tci
jneq #10, drop
ret #-1
drop: ret #0
** icmp random packet sampling, 1 in 4
ldh [12]
jne #0x800, drop
ldb [23]
jneq #1, drop
# get a random uint32 number
ld rand
mod #4
jneq #1, drop
ret #-1
drop: ret #0
** SECCOMP filter example:
ld [4] /* offsetof(struct seccomp_data, arch) */
jne #0xc000003e, bad /* AUDIT_ARCH_X86_64 */
ld [0] /* offsetof(struct seccomp_data, nr) */
jeq #15, good /* __NR_rt_sigreturn */
jeq #231, good /* __NR_exit_group */
jeq #60, good /* __NR_exit */
jeq #0, good /* __NR_read */
jeq #1, good /* __NR_write */
jeq #5, good /* __NR_fstat */
jeq #9, good /* __NR_mmap */
jeq #14, good /* __NR_rt_sigprocmask */
jeq #13, good /* __NR_rt_sigaction */
jeq #35, good /* __NR_nanosleep */
bad: ret #0 /* SECCOMP_RET_KILL_THREAD */
good: ret #0x7fff0000 /* SECCOMP_RET_ALLOW */
The above example code can be placed into a file (here called "foo"), and
then be passed to the bpf_asm tool for generating opcodes, output that xt_bpf
and cls_bpf understands and can directly be loaded with. Example with above
ARP code:
$ ./bpf_asm foo
4,40 0 0 12,21 0 1 2054,6 0 0 4294967295,6 0 0 0,
In copy and paste C-like output:
$ ./bpf_asm -c foo
{ 0x28, 0, 0, 0x0000000c },
{ 0x15, 0, 1, 0x00000806 },
{ 0x06, 0, 0, 0xffffffff },
{ 0x06, 0, 0, 0000000000 },
In particular, as usage with xt_bpf or cls_bpf can result in more complex BPF
filters that might not be obvious at first, it's good to test filters before
attaching to a live system. For that purpose, there's a small tool called
bpf_dbg under tools/net/ in the kernel source directory. This debugger allows
for testing BPF filters against given pcap files, single stepping through the
BPF code on the pcap's packets and to do BPF machine register dumps.
Starting bpf_dbg is trivial and just requires issuing:
# ./bpf_dbg
In case input and output do not equal stdin/stdout, bpf_dbg takes an
alternative stdin source as a first argument, and an alternative stdout
sink as a second one, e.g. `./bpf_dbg test_in.txt test_out.txt`.
Other than that, a particular libreadline configuration can be set via
file "~/.bpf_dbg_init" and the command history is stored in the file
"~/.bpf_dbg_history".
Interaction in bpf_dbg happens through a shell that also has auto-completion
support (follow-up example commands starting with '>' denote bpf_dbg shell).
The usual workflow would be to ...
> load bpf 6,40 0 0 12,21 0 3 2048,48 0 0 23,21 0 1 1,6 0 0 65535,6 0 0 0
Loads a BPF filter from standard output of bpf_asm, or transformed via
e.g. `tcpdump -iem1 -ddd port 22 | tr '\n' ','`. Note that for JIT
debugging (next section), this command creates a temporary socket and
loads the BPF code into the kernel. Thus, this will also be useful for
JIT developers.
> load pcap foo.pcap
Loads standard tcpdump pcap file.
> run [<n>]
bpf passes:1 fails:9
Runs through all packets from a pcap to account how many passes and fails
the filter will generate. A limit of packets to traverse can be given.
> disassemble
l0: ldh [12]
l1: jeq #0x800, l2, l5
l2: ldb [23]
l3: jeq #0x1, l4, l5
l4: ret #0xffff
l5: ret #0
Prints out BPF code disassembly.
> dump
/* { op, jt, jf, k }, */
{ 0x28, 0, 0, 0x0000000c },
{ 0x15, 0, 3, 0x00000800 },
{ 0x30, 0, 0, 0x00000017 },
{ 0x15, 0, 1, 0x00000001 },
{ 0x06, 0, 0, 0x0000ffff },
{ 0x06, 0, 0, 0000000000 },
Prints out C-style BPF code dump.
> breakpoint 0
breakpoint at: l0: ldh [12]
> breakpoint 1
breakpoint at: l1: jeq #0x800, l2, l5
...
Sets breakpoints at particular BPF instructions. Issuing a `run` command
will walk through the pcap file continuing from the current packet and
break when a breakpoint is being hit (another `run` will continue from
the currently active breakpoint executing next instructions):
> run
-- register dump --
pc: [0] <-- program counter
code: [40] jt[0] jf[0] k[12] <-- plain BPF code of current instruction
curr: l0: ldh [12] <-- disassembly of current instruction
A: [00000000][0] <-- content of A (hex, decimal)
X: [00000000][0] <-- content of X (hex, decimal)
M[0,15]: [00000000][0] <-- folded content of M (hex, decimal)
-- packet dump -- <-- Current packet from pcap (hex)
len: 42
0: 00 19 cb 55 55 a4 00 14 a4 43 78 69 08 06 00 01
16: 08 00 06 04 00 01 00 14 a4 43 78 69 0a 3b 01 26
32: 00 00 00 00 00 00 0a 3b 01 01
(breakpoint)
>
> breakpoint
breakpoints: 0 1
Prints currently set breakpoints.
> step [-<n>, +<n>]
Performs single stepping through the BPF program from the current pc
offset. Thus, on each step invocation, above register dump is issued.
This can go forwards and backwards in time, a plain `step` will break
on the next BPF instruction, thus +1. (No `run` needs to be issued here.)
> select <n>
Selects a given packet from the pcap file to continue from. Thus, on
the next `run` or `step`, the BPF program is being evaluated against
the user pre-selected packet. Numbering starts just as in Wireshark
with index 1.
> quit
#
Exits bpf_dbg.
JIT compiler
------------
The Linux kernel has a built-in BPF JIT compiler for x86_64, SPARC, PowerPC,
ARM, ARM64, MIPS and s390 and can be enabled through CONFIG_BPF_JIT. The JIT
compiler is transparently invoked for each attached filter from user space
or for internal kernel users if it has been previously enabled by root:
echo 1 > /proc/sys/net/core/bpf_jit_enable
For JIT developers, doing audits etc, each compile run can output the generated
opcode image into the kernel log via:
echo 2 > /proc/sys/net/core/bpf_jit_enable
Example output from dmesg:
[ 3389.935842] flen=6 proglen=70 pass=3 image=ffffffffa0069c8f
[ 3389.935847] JIT code: 00000000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 68
[ 3389.935849] JIT code: 00000010: 44 2b 4f 6c 4c 8b 87 d8 00 00 00 be 0c 00 00 00
[ 3389.935850] JIT code: 00000020: e8 1d 94 ff e0 3d 00 08 00 00 75 16 be 17 00 00
[ 3389.935851] JIT code: 00000030: 00 e8 28 94 ff e0 83 f8 01 75 07 b8 ff ff 00 00
[ 3389.935852] JIT code: 00000040: eb 02 31 c0 c9 c3
In the kernel source tree under tools/net/, there's bpf_jit_disasm for
generating disassembly out of the kernel log's hexdump:
# ./bpf_jit_disasm
70 bytes emitted from JIT compiler (pass:3, flen:6)
ffffffffa0069c8f + <x>:
0: push %rbp
1: mov %rsp,%rbp
4: sub $0x60,%rsp
8: mov %rbx,-0x8(%rbp)
c: mov 0x68(%rdi),%r9d
10: sub 0x6c(%rdi),%r9d
14: mov 0xd8(%rdi),%r8
1b: mov $0xc,%esi
20: callq 0xffffffffe0ff9442
25: cmp $0x800,%eax
2a: jne 0x0000000000000042
2c: mov $0x17,%esi
31: callq 0xffffffffe0ff945e
36: cmp $0x1,%eax
39: jne 0x0000000000000042
3b: mov $0xffff,%eax
40: jmp 0x0000000000000044
42: xor %eax,%eax
44: leaveq
45: retq
Issuing option `-o` will "annotate" opcodes to resulting assembler
instructions, which can be very useful for JIT developers:
# ./bpf_jit_disasm -o
70 bytes emitted from JIT compiler (pass:3, flen:6)
ffffffffa0069c8f + <x>:
0: push %rbp
55
1: mov %rsp,%rbp
48 89 e5
4: sub $0x60,%rsp
48 83 ec 60
8: mov %rbx,-0x8(%rbp)
48 89 5d f8
c: mov 0x68(%rdi),%r9d
44 8b 4f 68
10: sub 0x6c(%rdi),%r9d
44 2b 4f 6c
14: mov 0xd8(%rdi),%r8
4c 8b 87 d8 00 00 00
1b: mov $0xc,%esi
be 0c 00 00 00
20: callq 0xffffffffe0ff9442
e8 1d 94 ff e0
25: cmp $0x800,%eax
3d 00 08 00 00
2a: jne 0x0000000000000042
75 16
2c: mov $0x17,%esi
be 17 00 00 00
31: callq 0xffffffffe0ff945e
e8 28 94 ff e0
36: cmp $0x1,%eax
83 f8 01
39: jne 0x0000000000000042
75 07
3b: mov $0xffff,%eax
b8 ff ff 00 00
40: jmp 0x0000000000000044
eb 02
42: xor %eax,%eax
31 c0
44: leaveq
c9
45: retq
c3
For BPF JIT developers, bpf_jit_disasm, bpf_asm and bpf_dbg provides a useful
toolchain for developing and testing the kernel's JIT compiler.
BPF kernel internals
--------------------
Internally, for the kernel interpreter, a different instruction set
format with similar underlying principles from BPF described in previous
paragraphs is being used. However, the instruction set format is modelled
closer to the underlying architecture to mimic native instruction sets, so
that a better performance can be achieved (more details later). This new
ISA is called 'eBPF' or 'internal BPF' interchangeably. (Note: eBPF which
originates from [e]xtended BPF is not the same as BPF extensions! While
eBPF is an ISA, BPF extensions date back to classic BPF's 'overloading'
of BPF_LD | BPF_{B,H,W} | BPF_ABS instruction.)
It is designed to be JITed with one to one mapping, which can also open up
the possibility for GCC/LLVM compilers to generate optimized eBPF code through
an eBPF backend that performs almost as fast as natively compiled code.
The new instruction set was originally designed with the possible goal in
mind to write programs in "restricted C" and compile into eBPF with a optional
GCC/LLVM backend, so that it can just-in-time map to modern 64-bit CPUs with
minimal performance overhead over two steps, that is, C -> eBPF -> native code.
Currently, the new format is being used for running user BPF programs, which
includes seccomp BPF, classic socket filters, cls_bpf traffic classifier,
team driver's classifier for its load-balancing mode, netfilter's xt_bpf
extension, PTP dissector/classifier, and much more. They are all internally
converted by the kernel into the new instruction set representation and run
in the eBPF interpreter. For in-kernel handlers, this all works transparently
by using bpf_prog_create() for setting up the filter, resp.
bpf_prog_destroy() for destroying it. The macro
BPF_PROG_RUN(filter, ctx) transparently invokes eBPF interpreter or JITed
code to run the filter. 'filter' is a pointer to struct bpf_prog that we
got from bpf_prog_create(), and 'ctx' the given context (e.g.
skb pointer). All constraints and restrictions from bpf_check_classic() apply
before a conversion to the new layout is being done behind the scenes!
Currently, the classic BPF format is being used for JITing on most 32-bit
architectures, whereas x86-64, aarch64, s390x, powerpc64, sparc64, arm32 perform
JIT compilation from eBPF instruction set.
Some core changes of the new internal format:
- Number of registers increase from 2 to 10:
The old format had two registers A and X, and a hidden frame pointer. The
new layout extends this to be 10 internal registers and a read-only frame
pointer. Since 64-bit CPUs are passing arguments to functions via registers
the number of args from eBPF program to in-kernel function is restricted
to 5 and one register is used to accept return value from an in-kernel
function. Natively, x86_64 passes first 6 arguments in registers, aarch64/
sparcv9/mips64 have 7 - 8 registers for arguments; x86_64 has 6 callee saved
registers, and aarch64/sparcv9/mips64 have 11 or more callee saved registers.
Therefore, eBPF calling convention is defined as:
* R0 - return value from in-kernel function, and exit value for eBPF program
* R1 - R5 - arguments from eBPF program to in-kernel function
* R6 - R9 - callee saved registers that in-kernel function will preserve
* R10 - read-only frame pointer to access stack
Thus, all eBPF registers map one to one to HW registers on x86_64, aarch64,
etc, and eBPF calling convention maps directly to ABIs used by the kernel on
64-bit architectures.
On 32-bit architectures JIT may map programs that use only 32-bit arithmetic
and may let more complex programs to be interpreted.
R0 - R5 are scratch registers and eBPF program needs spill/fill them if
necessary across calls. Note that there is only one eBPF program (== one
eBPF main routine) and it cannot call other eBPF functions, it can only
call predefined in-kernel functions, though.
- Register width increases from 32-bit to 64-bit:
Still, the semantics of the original 32-bit ALU operations are preserved
via 32-bit subregisters. All eBPF registers are 64-bit with 32-bit lower
subregisters that zero-extend into 64-bit if they are being written to.
That behavior maps directly to x86_64 and arm64 subregister definition, but
makes other JITs more difficult.
32-bit architectures run 64-bit internal BPF programs via interpreter.
Their JITs may convert BPF programs that only use 32-bit subregisters into
native instruction set and let the rest being interpreted.
Operation is 64-bit, because on 64-bit architectures, pointers are also
64-bit wide, and we want to pass 64-bit values in/out of kernel functions,
so 32-bit eBPF registers would otherwise require to define register-pair
ABI, thus, there won't be able to use a direct eBPF register to HW register
mapping and JIT would need to do combine/split/move operations for every
register in and out of the function, which is complex, bug prone and slow.
Another reason is the use of atomic 64-bit counters.
- Conditional jt/jf targets replaced with jt/fall-through:
While the original design has constructs such as "if (cond) jump_true;
else jump_false;", they are being replaced into alternative constructs like
"if (cond) jump_true; /* else fall-through */".
- Introduces bpf_call insn and register passing convention for zero overhead
calls from/to other kernel functions:
Before an in-kernel function call, the internal BPF program needs to
place function arguments into R1 to R5 registers to satisfy calling
convention, then the interpreter will take them from registers and pass
to in-kernel function. If R1 - R5 registers are mapped to CPU registers
that are used for argument passing on given architecture, the JIT compiler
doesn't need to emit extra moves. Function arguments will be in the correct
registers and BPF_CALL instruction will be JITed as single 'call' HW
instruction. This calling convention was picked to cover common call
situations without performance penalty.
After an in-kernel function call, R1 - R5 are reset to unreadable and R0 has
a return value of the function. Since R6 - R9 are callee saved, their state
is preserved across the call.
For example, consider three C functions:
u64 f1() { return (*_f2)(1); }
u64 f2(u64 a) { return f3(a + 1, a); }
u64 f3(u64 a, u64 b) { return a - b; }
GCC can compile f1, f3 into x86_64:
f1:
movl $1, %edi
movq _f2(%rip), %rax
jmp *%rax
f3:
movq %rdi, %rax
subq %rsi, %rax
ret
Function f2 in eBPF may look like:
f2:
bpf_mov R2, R1
bpf_add R1, 1
bpf_call f3
bpf_exit
If f2 is JITed and the pointer stored to '_f2'. The calls f1 -> f2 -> f3 and
returns will be seamless. Without JIT, __bpf_prog_run() interpreter needs to
be used to call into f2.
For practical reasons all eBPF programs have only one argument 'ctx' which is
already placed into R1 (e.g. on __bpf_prog_run() startup) and the programs
can call kernel functions with up to 5 arguments. Calls with 6 or more arguments
are currently not supported, but these restrictions can be lifted if necessary
in the future.
On 64-bit architectures all register map to HW registers one to one. For
example, x86_64 JIT compiler can map them as ...
R0 - rax
R1 - rdi
R2 - rsi
R3 - rdx
R4 - rcx
R5 - r8
R6 - rbx
R7 - r13
R8 - r14
R9 - r15
R10 - rbp
... since x86_64 ABI mandates rdi, rsi, rdx, rcx, r8, r9 for argument passing
and rbx, r12 - r15 are callee saved.
Then the following internal BPF pseudo-program:
bpf_mov R6, R1 /* save ctx */
bpf_mov R2, 2
bpf_mov R3, 3
bpf_mov R4, 4
bpf_mov R5, 5
bpf_call foo
bpf_mov R7, R0 /* save foo() return value */
bpf_mov R1, R6 /* restore ctx for next call */
bpf_mov R2, 6
bpf_mov R3, 7
bpf_mov R4, 8
bpf_mov R5, 9
bpf_call bar
bpf_add R0, R7
bpf_exit
After JIT to x86_64 may look like:
push %rbp
mov %rsp,%rbp
sub $0x228,%rsp
mov %rbx,-0x228(%rbp)
mov %r13,-0x220(%rbp)
mov %rdi,%rbx
mov $0x2,%esi
mov $0x3,%edx
mov $0x4,%ecx
mov $0x5,%r8d
callq foo
mov %rax,%r13
mov %rbx,%rdi
mov $0x2,%esi
mov $0x3,%edx
mov $0x4,%ecx
mov $0x5,%r8d
callq bar
add %r13,%rax
mov -0x228(%rbp),%rbx
mov -0x220(%rbp),%r13
leaveq
retq
Which is in this example equivalent in C to:
u64 bpf_filter(u64 ctx)
{
return foo(ctx, 2, 3, 4, 5) + bar(ctx, 6, 7, 8, 9);
}
In-kernel functions foo() and bar() with prototype: u64 (*)(u64 arg1, u64
arg2, u64 arg3, u64 arg4, u64 arg5); will receive arguments in proper
registers and place their return value into '%rax' which is R0 in eBPF.
Prologue and epilogue are emitted by JIT and are implicit in the
interpreter. R0-R5 are scratch registers, so eBPF program needs to preserve
them across the calls as defined by calling convention.
For example the following program is invalid:
bpf_mov R1, 1
bpf_call foo
bpf_mov R0, R1
bpf_exit
After the call the registers R1-R5 contain junk values and cannot be read.
An in-kernel eBPF verifier is used to validate internal BPF programs.
Also in the new design, eBPF is limited to 4096 insns, which means that any
program will terminate quickly and will only call a fixed number of kernel
functions. Original BPF and the new format are two operand instructions,
which helps to do one-to-one mapping between eBPF insn and x86 insn during JIT.
The input context pointer for invoking the interpreter function is generic,
its content is defined by a specific use case. For seccomp register R1 points
to seccomp_data, for converted BPF filters R1 points to a skb.
A program, that is translated internally consists of the following elements:
op:16, jt:8, jf:8, k:32 ==> op:8, dst_reg:4, src_reg:4, off:16, imm:32
So far 87 internal BPF instructions were implemented. 8-bit 'op' opcode field
has room for new instructions. Some of them may use 16/24/32 byte encoding. New
instructions must be multiple of 8 bytes to preserve backward compatibility.
Internal BPF is a general purpose RISC instruction set. Not every register and
every instruction are used during translation from original BPF to new format.
For example, socket filters are not using 'exclusive add' instruction, but
tracing filters may do to maintain counters of events, for example. Register R9
is not used by socket filters either, but more complex filters may be running
out of registers and would have to resort to spill/fill to stack.
Internal BPF can used as generic assembler for last step performance
optimizations, socket filters and seccomp are using it as assembler. Tracing
filters may use it as assembler to generate code from kernel. In kernel usage
may not be bounded by security considerations, since generated internal BPF code
may be optimizing internal code path and not being exposed to the user space.
Safety of internal BPF can come from a verifier (TBD). In such use cases as
described, it may be used as safe instruction set.
Just like the original BPF, the new format runs within a controlled environment,
is deterministic and the kernel can easily prove that. The safety of the program
can be determined in two steps: first step does depth-first-search to disallow
loops and other CFG validation; second step starts from the first insn and
descends all possible paths. It simulates execution of every insn and observes
the state change of registers and stack.
eBPF opcode encoding
--------------------
eBPF is reusing most of the opcode encoding from classic to simplify conversion
of classic BPF to eBPF. For arithmetic and jump instructions the 8-bit 'code'
field is divided into three parts:
+----------------+--------+--------------------+
| 4 bits | 1 bit | 3 bits |
| operation code | source | instruction class |
+----------------+--------+--------------------+
(MSB) (LSB)
Three LSB bits store instruction class which is one of:
Classic BPF classes: eBPF classes:
BPF_LD 0x00 BPF_LD 0x00
BPF_LDX 0x01 BPF_LDX 0x01
BPF_ST 0x02 BPF_ST 0x02
BPF_STX 0x03 BPF_STX 0x03
BPF_ALU 0x04 BPF_ALU 0x04
BPF_JMP 0x05 BPF_JMP 0x05
BPF_RET 0x06 [ class 6 unused, for future if needed ]
BPF_MISC 0x07 BPF_ALU64 0x07
When BPF_CLASS(code) == BPF_ALU or BPF_JMP, 4th bit encodes source operand ...
BPF_K 0x00
BPF_X 0x08
* in classic BPF, this means:
BPF_SRC(code) == BPF_X - use register X as source operand
BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
* in eBPF, this means:
BPF_SRC(code) == BPF_X - use 'src_reg' register as source operand
BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
... and four MSB bits store operation code.
If BPF_CLASS(code) == BPF_ALU or BPF_ALU64 [ in eBPF ], BPF_OP(code) is one of:
BPF_ADD 0x00
BPF_SUB 0x10
BPF_MUL 0x20
BPF_DIV 0x30
BPF_OR 0x40
BPF_AND 0x50
BPF_LSH 0x60
BPF_RSH 0x70
BPF_NEG 0x80
BPF_MOD 0x90
BPF_XOR 0xa0
BPF_MOV 0xb0 /* eBPF only: mov reg to reg */
BPF_ARSH 0xc0 /* eBPF only: sign extending shift right */
BPF_END 0xd0 /* eBPF only: endianness conversion */
If BPF_CLASS(code) == BPF_JMP, BPF_OP(code) is one of:
BPF_JA 0x00
BPF_JEQ 0x10
BPF_JGT 0x20
BPF_JGE 0x30
BPF_JSET 0x40
BPF_JNE 0x50 /* eBPF only: jump != */
BPF_JSGT 0x60 /* eBPF only: signed '>' */
BPF_JSGE 0x70 /* eBPF only: signed '>=' */
BPF_CALL 0x80 /* eBPF only: function call */
BPF_EXIT 0x90 /* eBPF only: function return */
BPF_JLT 0xa0 /* eBPF only: unsigned '<' */
BPF_JLE 0xb0 /* eBPF only: unsigned '<=' */
BPF_JSLT 0xc0 /* eBPF only: signed '<' */
BPF_JSLE 0xd0 /* eBPF only: signed '<=' */
So BPF_ADD | BPF_X | BPF_ALU means 32-bit addition in both classic BPF
and eBPF. There are only two registers in classic BPF, so it means A += X.
In eBPF it means dst_reg = (u32) dst_reg + (u32) src_reg; similarly,
BPF_XOR | BPF_K | BPF_ALU means A ^= imm32 in classic BPF and analogous
src_reg = (u32) src_reg ^ (u32) imm32 in eBPF.
Classic BPF is using BPF_MISC class to represent A = X and X = A moves.
eBPF is using BPF_MOV | BPF_X | BPF_ALU code instead. Since there are no
BPF_MISC operations in eBPF, the class 7 is used as BPF_ALU64 to mean
exactly the same operations as BPF_ALU, but with 64-bit wide operands
instead. So BPF_ADD | BPF_X | BPF_ALU64 means 64-bit addition, i.e.:
dst_reg = dst_reg + src_reg
Classic BPF wastes the whole BPF_RET class to represent a single 'ret'
operation. Classic BPF_RET | BPF_K means copy imm32 into return register
and perform function exit. eBPF is modeled to match CPU, so BPF_JMP | BPF_EXIT
in eBPF means function exit only. The eBPF program needs to store return
value into register R0 before doing a BPF_EXIT. Class 6 in eBPF is currently
unused and reserved for future use.
For load and store instructions the 8-bit 'code' field is divided as:
+--------+--------+-------------------+
| 3 bits | 2 bits | 3 bits |
| mode | size | instruction class |
+--------+--------+-------------------+
(MSB) (LSB)
Size modifier is one of ...
BPF_W 0x00 /* word */
BPF_H 0x08 /* half word */
BPF_B 0x10 /* byte */
BPF_DW 0x18 /* eBPF only, double word */
... which encodes size of load/store operation:
B - 1 byte
H - 2 byte
W - 4 byte
DW - 8 byte (eBPF only)
Mode modifier is one of:
BPF_IMM 0x00 /* used for 32-bit mov in classic BPF and 64-bit in eBPF */
BPF_ABS 0x20
BPF_IND 0x40
BPF_MEM 0x60
BPF_LEN 0x80 /* classic BPF only, reserved in eBPF */
BPF_MSH 0xa0 /* classic BPF only, reserved in eBPF */
BPF_XADD 0xc0 /* eBPF only, exclusive add */
eBPF has two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and
(BPF_IND | <size> | BPF_LD) which are used to access packet data.
They had to be carried over from classic to have strong performance of
socket filters running in eBPF interpreter. These instructions can only
be used when interpreter context is a pointer to 'struct sk_buff' and
have seven implicit operands. Register R6 is an implicit input that must
contain pointer to sk_buff. Register R0 is an implicit output which contains
the data fetched from the packet. Registers R1-R5 are scratch registers
and must not be used to store the data across BPF_ABS | BPF_LD or
BPF_IND | BPF_LD instructions.
These instructions have implicit program exit condition as well. When
eBPF program is trying to access the data beyond the packet boundary,
the interpreter will abort the execution of the program. JIT compilers
therefore must preserve this property. src_reg and imm32 fields are
explicit inputs to these instructions.
For example:
BPF_IND | BPF_W | BPF_LD means:
R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32))
and R1 - R5 were scratched.
Unlike classic BPF instruction set, eBPF has generic load/store operations:
BPF_MEM | <size> | BPF_STX: *(size *) (dst_reg + off) = src_reg
BPF_MEM | <size> | BPF_ST: *(size *) (dst_reg + off) = imm32
BPF_MEM | <size> | BPF_LDX: dst_reg = *(size *) (src_reg + off)
BPF_XADD | BPF_W | BPF_STX: lock xadd *(u32 *)(dst_reg + off16) += src_reg
BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg
Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. Note that 1 and
2 byte atomic increments are not supported.