forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhctr2.c
579 lines (495 loc) · 16.6 KB
/
hctr2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
// SPDX-License-Identifier: GPL-2.0
/*
* HCTR2 length-preserving encryption mode
*
* Copyright 2021 Google LLC
*/
/*
* HCTR2 is a length-preserving encryption mode that is efficient on
* processors with instructions to accelerate AES and carryless
* multiplication, e.g. x86 processors with AES-NI and CLMUL, and ARM
* processors with the ARMv8 crypto extensions.
*
* For more details, see the paper: "Length-preserving encryption with HCTR2"
* (https://eprint.iacr.org/2021/1441.pdf)
*/
#include <crypto/internal/cipher.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/polyval.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#define BLOCKCIPHER_BLOCK_SIZE 16
/*
* The specification allows variable-length tweaks, but Linux's crypto API
* currently only allows algorithms to support a single length. The "natural"
* tweak length for HCTR2 is 16, since that fits into one POLYVAL block for
* the best performance. But longer tweaks are useful for fscrypt, to avoid
* needing to derive per-file keys. So instead we use two blocks, or 32 bytes.
*/
#define TWEAK_SIZE 32
struct hctr2_instance_ctx {
struct crypto_cipher_spawn blockcipher_spawn;
struct crypto_skcipher_spawn xctr_spawn;
struct crypto_shash_spawn polyval_spawn;
};
struct hctr2_tfm_ctx {
struct crypto_cipher *blockcipher;
struct crypto_skcipher *xctr;
struct crypto_shash *polyval;
u8 L[BLOCKCIPHER_BLOCK_SIZE];
int hashed_tweak_offset;
/*
* This struct is allocated with extra space for two exported hash
* states. Since the hash state size is not known at compile-time, we
* can't add these to the struct directly.
*
* hashed_tweaklen_divisible;
* hashed_tweaklen_remainder;
*/
};
struct hctr2_request_ctx {
u8 first_block[BLOCKCIPHER_BLOCK_SIZE];
u8 xctr_iv[BLOCKCIPHER_BLOCK_SIZE];
struct scatterlist *bulk_part_dst;
struct scatterlist *bulk_part_src;
struct scatterlist sg_src[2];
struct scatterlist sg_dst[2];
/*
* Sub-request sizes are unknown at compile-time, so they need to go
* after the members with known sizes.
*/
union {
struct shash_desc hash_desc;
struct skcipher_request xctr_req;
} u;
/*
* This struct is allocated with extra space for one exported hash
* state. Since the hash state size is not known at compile-time, we
* can't add it to the struct directly.
*
* hashed_tweak;
*/
};
static inline u8 *hctr2_hashed_tweaklen(const struct hctr2_tfm_ctx *tctx,
bool has_remainder)
{
u8 *p = (u8 *)tctx + sizeof(*tctx);
if (has_remainder) /* For messages not a multiple of block length */
p += crypto_shash_statesize(tctx->polyval);
return p;
}
static inline u8 *hctr2_hashed_tweak(const struct hctr2_tfm_ctx *tctx,
struct hctr2_request_ctx *rctx)
{
return (u8 *)rctx + tctx->hashed_tweak_offset;
}
/*
* The input data for each HCTR2 hash step begins with a 16-byte block that
* contains the tweak length and a flag that indicates whether the input is evenly
* divisible into blocks. Since this implementation only supports one tweak
* length, we precompute the two hash states resulting from hashing the two
* possible values of this initial block. This reduces by one block the amount of
* data that needs to be hashed for each encryption/decryption
*
* These precomputed hashes are stored in hctr2_tfm_ctx.
*/
static int hctr2_hash_tweaklen(struct hctr2_tfm_ctx *tctx, bool has_remainder)
{
SHASH_DESC_ON_STACK(shash, tfm->polyval);
__le64 tweak_length_block[2];
int err;
shash->tfm = tctx->polyval;
memset(tweak_length_block, 0, sizeof(tweak_length_block));
tweak_length_block[0] = cpu_to_le64(TWEAK_SIZE * 8 * 2 + 2 + has_remainder);
err = crypto_shash_init(shash);
if (err)
return err;
err = crypto_shash_update(shash, (u8 *)tweak_length_block,
POLYVAL_BLOCK_SIZE);
if (err)
return err;
return crypto_shash_export(shash, hctr2_hashed_tweaklen(tctx, has_remainder));
}
static int hctr2_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
u8 hbar[BLOCKCIPHER_BLOCK_SIZE];
int err;
crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
crypto_cipher_set_flags(tctx->blockcipher,
crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_cipher_setkey(tctx->blockcipher, key, keylen);
if (err)
return err;
crypto_skcipher_clear_flags(tctx->xctr, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(tctx->xctr,
crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(tctx->xctr, key, keylen);
if (err)
return err;
memset(hbar, 0, sizeof(hbar));
crypto_cipher_encrypt_one(tctx->blockcipher, hbar, hbar);
memset(tctx->L, 0, sizeof(tctx->L));
tctx->L[0] = 0x01;
crypto_cipher_encrypt_one(tctx->blockcipher, tctx->L, tctx->L);
crypto_shash_clear_flags(tctx->polyval, CRYPTO_TFM_REQ_MASK);
crypto_shash_set_flags(tctx->polyval, crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_shash_setkey(tctx->polyval, hbar, BLOCKCIPHER_BLOCK_SIZE);
if (err)
return err;
memzero_explicit(hbar, sizeof(hbar));
return hctr2_hash_tweaklen(tctx, true) ?: hctr2_hash_tweaklen(tctx, false);
}
static int hctr2_hash_tweak(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
struct shash_desc *hash_desc = &rctx->u.hash_desc;
int err;
bool has_remainder = req->cryptlen % POLYVAL_BLOCK_SIZE;
hash_desc->tfm = tctx->polyval;
err = crypto_shash_import(hash_desc, hctr2_hashed_tweaklen(tctx, has_remainder));
if (err)
return err;
err = crypto_shash_update(hash_desc, req->iv, TWEAK_SIZE);
if (err)
return err;
// Store the hashed tweak, since we need it when computing both
// H(T || N) and H(T || V).
return crypto_shash_export(hash_desc, hctr2_hashed_tweak(tctx, rctx));
}
static int hctr2_hash_message(struct skcipher_request *req,
struct scatterlist *sgl,
u8 digest[POLYVAL_DIGEST_SIZE])
{
static const u8 padding[BLOCKCIPHER_BLOCK_SIZE] = { 0x1 };
struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
struct shash_desc *hash_desc = &rctx->u.hash_desc;
const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
struct sg_mapping_iter miter;
unsigned int remainder = bulk_len % BLOCKCIPHER_BLOCK_SIZE;
int i;
int err = 0;
int n = 0;
sg_miter_start(&miter, sgl, sg_nents(sgl),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
for (i = 0; i < bulk_len; i += n) {
sg_miter_next(&miter);
n = min_t(unsigned int, miter.length, bulk_len - i);
err = crypto_shash_update(hash_desc, miter.addr, n);
if (err)
break;
}
sg_miter_stop(&miter);
if (err)
return err;
if (remainder) {
err = crypto_shash_update(hash_desc, padding,
BLOCKCIPHER_BLOCK_SIZE - remainder);
if (err)
return err;
}
return crypto_shash_final(hash_desc, digest);
}
static int hctr2_finish(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
u8 digest[POLYVAL_DIGEST_SIZE];
struct shash_desc *hash_desc = &rctx->u.hash_desc;
int err;
// U = UU ^ H(T || V)
// or M = MM ^ H(T || N)
hash_desc->tfm = tctx->polyval;
err = crypto_shash_import(hash_desc, hctr2_hashed_tweak(tctx, rctx));
if (err)
return err;
err = hctr2_hash_message(req, rctx->bulk_part_dst, digest);
if (err)
return err;
crypto_xor(rctx->first_block, digest, BLOCKCIPHER_BLOCK_SIZE);
// Copy U (or M) into dst scatterlist
scatterwalk_map_and_copy(rctx->first_block, req->dst,
0, BLOCKCIPHER_BLOCK_SIZE, 1);
return 0;
}
static void hctr2_xctr_done(void *data, int err)
{
struct skcipher_request *req = data;
if (!err)
err = hctr2_finish(req);
skcipher_request_complete(req, err);
}
static int hctr2_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
u8 digest[POLYVAL_DIGEST_SIZE];
int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
int err;
// Requests must be at least one block
if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
return -EINVAL;
// Copy M (or U) into a temporary buffer
scatterwalk_map_and_copy(rctx->first_block, req->src,
0, BLOCKCIPHER_BLOCK_SIZE, 0);
// Create scatterlists for N and V
rctx->bulk_part_src = scatterwalk_ffwd(rctx->sg_src, req->src,
BLOCKCIPHER_BLOCK_SIZE);
rctx->bulk_part_dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
BLOCKCIPHER_BLOCK_SIZE);
// MM = M ^ H(T || N)
// or UU = U ^ H(T || V)
err = hctr2_hash_tweak(req);
if (err)
return err;
err = hctr2_hash_message(req, rctx->bulk_part_src, digest);
if (err)
return err;
crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE);
// UU = E(MM)
// or MM = D(UU)
if (enc)
crypto_cipher_encrypt_one(tctx->blockcipher, rctx->first_block,
digest);
else
crypto_cipher_decrypt_one(tctx->blockcipher, rctx->first_block,
digest);
// S = MM ^ UU ^ L
crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE);
crypto_xor_cpy(rctx->xctr_iv, digest, tctx->L, BLOCKCIPHER_BLOCK_SIZE);
// V = XCTR(S, N)
// or N = XCTR(S, V)
skcipher_request_set_tfm(&rctx->u.xctr_req, tctx->xctr);
skcipher_request_set_crypt(&rctx->u.xctr_req, rctx->bulk_part_src,
rctx->bulk_part_dst, bulk_len,
rctx->xctr_iv);
skcipher_request_set_callback(&rctx->u.xctr_req,
req->base.flags,
hctr2_xctr_done, req);
return crypto_skcipher_encrypt(&rctx->u.xctr_req) ?:
hctr2_finish(req);
}
static int hctr2_encrypt(struct skcipher_request *req)
{
return hctr2_crypt(req, true);
}
static int hctr2_decrypt(struct skcipher_request *req)
{
return hctr2_crypt(req, false);
}
static int hctr2_init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst);
struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *xctr;
struct crypto_cipher *blockcipher;
struct crypto_shash *polyval;
unsigned int subreq_size;
int err;
xctr = crypto_spawn_skcipher(&ictx->xctr_spawn);
if (IS_ERR(xctr))
return PTR_ERR(xctr);
blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
if (IS_ERR(blockcipher)) {
err = PTR_ERR(blockcipher);
goto err_free_xctr;
}
polyval = crypto_spawn_shash(&ictx->polyval_spawn);
if (IS_ERR(polyval)) {
err = PTR_ERR(polyval);
goto err_free_blockcipher;
}
tctx->xctr = xctr;
tctx->blockcipher = blockcipher;
tctx->polyval = polyval;
BUILD_BUG_ON(offsetofend(struct hctr2_request_ctx, u) !=
sizeof(struct hctr2_request_ctx));
subreq_size = max(sizeof_field(struct hctr2_request_ctx, u.hash_desc) +
crypto_shash_descsize(polyval),
sizeof_field(struct hctr2_request_ctx, u.xctr_req) +
crypto_skcipher_reqsize(xctr));
tctx->hashed_tweak_offset = offsetof(struct hctr2_request_ctx, u) +
subreq_size;
crypto_skcipher_set_reqsize(tfm, tctx->hashed_tweak_offset +
crypto_shash_statesize(polyval));
return 0;
err_free_blockcipher:
crypto_free_cipher(blockcipher);
err_free_xctr:
crypto_free_skcipher(xctr);
return err;
}
static void hctr2_exit_tfm(struct crypto_skcipher *tfm)
{
struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
crypto_free_cipher(tctx->blockcipher);
crypto_free_skcipher(tctx->xctr);
crypto_free_shash(tctx->polyval);
}
static void hctr2_free_instance(struct skcipher_instance *inst)
{
struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst);
crypto_drop_cipher(&ictx->blockcipher_spawn);
crypto_drop_skcipher(&ictx->xctr_spawn);
crypto_drop_shash(&ictx->polyval_spawn);
kfree(inst);
}
static int hctr2_create_common(struct crypto_template *tmpl,
struct rtattr **tb,
const char *xctr_name,
const char *polyval_name)
{
struct skcipher_alg_common *xctr_alg;
u32 mask;
struct skcipher_instance *inst;
struct hctr2_instance_ctx *ictx;
struct crypto_alg *blockcipher_alg;
struct shash_alg *polyval_alg;
char blockcipher_name[CRYPTO_MAX_ALG_NAME];
int len;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
if (err)
return err;
inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ictx = skcipher_instance_ctx(inst);
/* Stream cipher, xctr(block_cipher) */
err = crypto_grab_skcipher(&ictx->xctr_spawn,
skcipher_crypto_instance(inst),
xctr_name, 0, mask);
if (err)
goto err_free_inst;
xctr_alg = crypto_spawn_skcipher_alg_common(&ictx->xctr_spawn);
err = -EINVAL;
if (strncmp(xctr_alg->base.cra_name, "xctr(", 5))
goto err_free_inst;
len = strscpy(blockcipher_name, xctr_alg->base.cra_name + 5,
sizeof(blockcipher_name));
if (len < 1)
goto err_free_inst;
if (blockcipher_name[len - 1] != ')')
goto err_free_inst;
blockcipher_name[len - 1] = 0;
/* Block cipher, e.g. "aes" */
err = crypto_grab_cipher(&ictx->blockcipher_spawn,
skcipher_crypto_instance(inst),
blockcipher_name, 0, mask);
if (err)
goto err_free_inst;
blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
/* Require blocksize of 16 bytes */
err = -EINVAL;
if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
goto err_free_inst;
/* Polyval ε-∆U hash function */
err = crypto_grab_shash(&ictx->polyval_spawn,
skcipher_crypto_instance(inst),
polyval_name, 0, mask);
if (err)
goto err_free_inst;
polyval_alg = crypto_spawn_shash_alg(&ictx->polyval_spawn);
/* Ensure Polyval is being used */
err = -EINVAL;
if (strcmp(polyval_alg->base.cra_name, "polyval") != 0)
goto err_free_inst;
/* Instance fields */
err = -ENAMETOOLONG;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "hctr2(%s)",
blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"hctr2_base(%s,%s)",
xctr_alg->base.cra_driver_name,
polyval_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
inst->alg.base.cra_ctxsize = sizeof(struct hctr2_tfm_ctx) +
polyval_alg->statesize * 2;
inst->alg.base.cra_alignmask = xctr_alg->base.cra_alignmask;
/*
* The hash function is called twice, so it is weighted higher than the
* xctr and blockcipher.
*/
inst->alg.base.cra_priority = (2 * xctr_alg->base.cra_priority +
4 * polyval_alg->base.cra_priority +
blockcipher_alg->cra_priority) / 7;
inst->alg.setkey = hctr2_setkey;
inst->alg.encrypt = hctr2_encrypt;
inst->alg.decrypt = hctr2_decrypt;
inst->alg.init = hctr2_init_tfm;
inst->alg.exit = hctr2_exit_tfm;
inst->alg.min_keysize = xctr_alg->min_keysize;
inst->alg.max_keysize = xctr_alg->max_keysize;
inst->alg.ivsize = TWEAK_SIZE;
inst->free = hctr2_free_instance;
err = skcipher_register_instance(tmpl, inst);
if (err) {
err_free_inst:
hctr2_free_instance(inst);
}
return err;
}
static int hctr2_create_base(struct crypto_template *tmpl, struct rtattr **tb)
{
const char *xctr_name;
const char *polyval_name;
xctr_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(xctr_name))
return PTR_ERR(xctr_name);
polyval_name = crypto_attr_alg_name(tb[2]);
if (IS_ERR(polyval_name))
return PTR_ERR(polyval_name);
return hctr2_create_common(tmpl, tb, xctr_name, polyval_name);
}
static int hctr2_create(struct crypto_template *tmpl, struct rtattr **tb)
{
const char *blockcipher_name;
char xctr_name[CRYPTO_MAX_ALG_NAME];
blockcipher_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(blockcipher_name))
return PTR_ERR(blockcipher_name);
if (snprintf(xctr_name, CRYPTO_MAX_ALG_NAME, "xctr(%s)",
blockcipher_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
return hctr2_create_common(tmpl, tb, xctr_name, "polyval");
}
static struct crypto_template hctr2_tmpls[] = {
{
/* hctr2_base(xctr_name, polyval_name) */
.name = "hctr2_base",
.create = hctr2_create_base,
.module = THIS_MODULE,
}, {
/* hctr2(blockcipher_name) */
.name = "hctr2",
.create = hctr2_create,
.module = THIS_MODULE,
}
};
static int __init hctr2_module_init(void)
{
return crypto_register_templates(hctr2_tmpls, ARRAY_SIZE(hctr2_tmpls));
}
static void __exit hctr2_module_exit(void)
{
return crypto_unregister_templates(hctr2_tmpls,
ARRAY_SIZE(hctr2_tmpls));
}
subsys_initcall(hctr2_module_init);
module_exit(hctr2_module_exit);
MODULE_DESCRIPTION("HCTR2 length-preserving encryption mode");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CRYPTO("hctr2");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);