Skip to content

Latest commit

 

History

History
114 lines (77 loc) · 6.12 KB

download_prebuilt_libraries.md

File metadata and controls

114 lines (77 loc) · 6.12 KB

English | 中文

How to Install Prebuilt Library

FastDeploy provides pre-built libraries for developers to download and install directly. Meanwhile, FastDeploy also offers easy access to compile so that developers can compile FastDeploy according to their own needs.

This article is divided into two parts:

GPU Deployment Environment

Environment Requirement

  • CUDA >= 11.2
  • cuDNN >= 8.0
  • python >= 3.6
  • OS: Linux(x64)/Windows 10(x64)

FastDeploy supports Computer Vision, Text and NLP model deployment on CPU and Nvidia GPU with Paddle Inference, ONNX Runtime, OpenVINO and TensorRT inference backends.

Python SDK

Install the released version(the newest 1.0.1 for now)

pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html

Install the Develop version(Nightly build)

pip install fastdeploy-gpu-python==0.0.0 -f https://www.paddlepaddle.org.cn/whl/fastdeploy_nightly_build.html

We recommend users to use Conda to configure the development environment.

conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2

C++ SDK

Install the released version(Latest 1.0.1)

Platform File Description
Linux x64 fastdeploy-linux-x64-gpu-1.0.1.tgz g++ 8.2, CUDA 11.2, cuDNN 8.2
Windows x64 fastdeploy-win-x64-gpu-1.0.1.zip Visual Studio 16 2019, CUDA 11.2, cuDNN 8.2

Install the Develop version(Nightly build)

Platform File Description
Linux x64 fastdeploy-linux-x64-gpu-0.0.0.tgz g++ 8.2, CUDA 11.2, cuDNN 8.2
Windows x64 fastdeploy-win-x64-gpu-0.0.0.zip Visual Studio 16 2019, CUDA 11.2, cuDNN 8.2

CPU Deployment Environment

Environment Requirement

  • python >= 3.6
  • OS: Linux(x64/aarch64)/Windows 10 x64/Mac OSX(x86/aarm64)

FastDeploy supports computer vision, text and NLP model deployment on CPU with Paddle Inference, ONNX Runtime, OpenVINO inference backends. It should be noted that under Linux aarch64 and Mac OSX, only the ONNX Runtime is supported for now.

Python SDK

Install the released version(Latest 1.0.1 for now)

pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html

Install the Develop version(Nightly build)

pip install fastdeploy-python==0.0.0 -f https://www.paddlepaddle.org.cn/whl/fastdeploy_nightly_build.html

C++ SDK

Install the released version(Latest 1.0.1 for now, Android is 1.0.1)

Platform File Description
Linux x64 fastdeploy-linux-x64-1.0.1.tgz g++ 8.2
Windows x64 fastdeploy-win-x64-1.0.1.zip Visual Studio 16 2019
Mac OSX x64 fastdeploy-osx-x86_64-1.0.1.tgz clang++ 10.0.0
Mac OSX arm64 fastdeploy-osx-arm64-1.0.1.tgz clang++ 13.0.0
Linux aarch64 fastdeploy-osx-arm64-1.0.1.tgz gcc 6.3
Android armv7&v8 fastdeploy-android-1.0.0-shared.tgz NDK 25, clang++, support arm64-v8a及armeabi-v7a

Java SDK

Install the released version(Android is 1.0.0 pre-release)

Platform File Description
Android Java SDK fastdeploy-android-sdk-1.0.0.aar NDK 20, minSdkVersion 15, targetSdkVersion 28

Install the Develop version(Nightly build)

Platform File Description
Linux x64 fastdeploy-linux-x64-0.0.0.tgz g++ 8.2
Windows x64 fastdeploy-win-x64-0.0.0.zip Visual Studio 16 2019
Mac OSX x64 fastdeploy-osx-arm64-0.0.0.tgz -
Mac OSX arm64 fastdeploy-osx-arm64-0.0.0.tgz clang++ 13.0.0编译产出
Linux aarch64 - -
Android armv7&v8 - -