Skip to content

Latest commit

 

History

History
142 lines (117 loc) · 4.01 KB

README.md

File metadata and controls

142 lines (117 loc) · 4.01 KB

Python bindings for COLMAP estimators

At the moment, we provide bindings for essential and fundamental matrix estimation as well as absolute pose estimation.

Getting started

Clone the repository and its submodules by running:

git clone --recursive [email protected]:mihaidusmanu/pycolmap.git

Unix

Preferred: pycolmap is now available for Python 3.7 and Python 3.8 via pypi:

pip install pycolmap

These wheels were built using John Lambert's wheel-builder here.

If you instead prefer to build the wheels from source, COLMAP should be installed as a library before proceeding. Please refer to the official website for installation instructions. PyCOLMAP can then be installed using pip:

pip install ./

Windows

To install pycolmap on Windows, we recommend to install colmap with vcpkg. From your vcpkg directory, run

.\vcpkg.exe install colmap --triplet=x64-windows

Then set the CMAKE_TOOLCHAIN_FILE environment variable to your vcpkg\scripts\buildsystems\vcpkg.cmake path.

example (powershell)

$env:CMAKE_TOOLCHAIN_FILE='C:\Workspace\vcpkg\scripts\buildsystems\vcpkg.cmake'

Finally go to the pycolmap folder and run

py -m pip install ./

Usage

Camera parameters

The current bindings are compatible with numpy arrays for both 2D and 3D points. The camera parameters should be sent as a Python dictionary with the following template:

{
    'model': COLMAP_CAMERA_MODEL_NAME,
    'width': IMAGE_WIDTH,
    'height': IMAGE_HEIGHT,
    'params': EXTRA_CAMERA_PARAMETERS_LIST
}

Please refer to colmap - src/base/camera_models.h for more details regarding camera models and parameters.

Absolute pose estimation

For instance, the following snippet runs absolute pose estimation for a pinhole camera given 2D-3D correspondences:

import pycolmap

# Parameters:
# - points2D: Nx2 array; pixel coordinates
# - points3D: Nx3 array; world coordinates
# - camera_dict: dictionary
# Named parameters
# - max_error_px: float; RANSAC inlier threshold in pixels
answer = pycolmap.absolute_pose_estimation(
    points2D, points3D,
    {
        'model': 'SIMPLE_PINHOLE',
        'width': width,
        'height': height,
        'params': [focal_length, cx, cy]
    }
)
# Returns:
# - dictionary containing the RANSAC output

Standalone Pose Refinement

import pycolmap
# Parameters:
# - tvec: List of 3 floats, translation component of the pose (world to camera)
# - qvec: List of 4 floats, quaternion component of the pose (world to camera)
# - points2D: Nx2 array; pixel coordinates
# - points3D: Nx3 array; world coordinates
# - inlier_mask: array of N bool; true -> corresponding value in points2D/points3D is an inlier
# - camera_dict: dictionary
answer = pycolmap.pose_refinement(
    tvec, qvec, points2D, points3D, inlier_mask,
    {
        'model': 'SIMPLE_PINHOLE',
        'width': width,
        'height': height,
        'params': [focal_length, cx, cy]
    }
)
# Returns:
# - dictionary containing the RANSAC output

SIFT feature extraction

import numpy as np

import pycolmap

from PIL import Image, ImageOps

# Input should be grayscale image with range [0, 1].
with open('image.jpg', 'rb') as f:
    img = Image.open(f)
    img = img.convert('RGB')
    img = ImageOps.grayscale(img)
    img = np.array(img).astype(np.float) / 255.

# Parameters:
# - image: HxW float array
# Named parameters:
# - num_octaves: int (4)
# - octave_resolution: int (3)
# - first_octave: int (0)
# - edge_thresh: float (10)
# - peak_thresh: float (0.01)
# - upright: bool (False)
keypoints, scores, descriptors = pycolmap.extract_sift(img)
# Returns:
# - keypoints: Nx4 array; format: x (j), y (i), sigma, angle
# - scores: N array; DoG scores
# - descriptors: Nx128 array; L2-normalized descriptors

TODO

  • Add documentation
  • Add more detailed examples