At the moment, we provide bindings for essential and fundamental matrix estimation as well as absolute pose estimation.
Clone the repository and its submodules by running:
git clone --recursive [email protected]:mihaidusmanu/pycolmap.git
Preferred: pycolmap
is now available for Python 3.7 and Python 3.8 via pypi:
pip install pycolmap
These wheels were built using John Lambert's wheel-builder here.
If you instead prefer to build the wheels from source, COLMAP should be installed as a library before proceeding. Please refer to the official website for installation instructions. PyCOLMAP can then be installed using pip
:
pip install ./
To install pycolmap on Windows, we recommend to install colmap with vcpkg. From your vcpkg directory, run
.\vcpkg.exe install colmap --triplet=x64-windows
Then set the CMAKE_TOOLCHAIN_FILE
environment variable to your vcpkg\scripts\buildsystems\vcpkg.cmake
path.
example (powershell)
$env:CMAKE_TOOLCHAIN_FILE='C:\Workspace\vcpkg\scripts\buildsystems\vcpkg.cmake'
Finally go to the pycolmap folder and run
py -m pip install ./
The current bindings are compatible with numpy arrays for both 2D and 3D points. The camera parameters should be sent as a Python dictionary with the following template:
{
'model': COLMAP_CAMERA_MODEL_NAME,
'width': IMAGE_WIDTH,
'height': IMAGE_HEIGHT,
'params': EXTRA_CAMERA_PARAMETERS_LIST
}
Please refer to colmap - src/base/camera_models.h for more details regarding camera models and parameters.
For instance, the following snippet runs absolute pose estimation for a pinhole camera given 2D-3D correspondences:
import pycolmap
# Parameters:
# - points2D: Nx2 array; pixel coordinates
# - points3D: Nx3 array; world coordinates
# - camera_dict: dictionary
# Named parameters
# - max_error_px: float; RANSAC inlier threshold in pixels
answer = pycolmap.absolute_pose_estimation(
points2D, points3D,
{
'model': 'SIMPLE_PINHOLE',
'width': width,
'height': height,
'params': [focal_length, cx, cy]
}
)
# Returns:
# - dictionary containing the RANSAC output
import pycolmap
# Parameters:
# - tvec: List of 3 floats, translation component of the pose (world to camera)
# - qvec: List of 4 floats, quaternion component of the pose (world to camera)
# - points2D: Nx2 array; pixel coordinates
# - points3D: Nx3 array; world coordinates
# - inlier_mask: array of N bool; true -> corresponding value in points2D/points3D is an inlier
# - camera_dict: dictionary
answer = pycolmap.pose_refinement(
tvec, qvec, points2D, points3D, inlier_mask,
{
'model': 'SIMPLE_PINHOLE',
'width': width,
'height': height,
'params': [focal_length, cx, cy]
}
)
# Returns:
# - dictionary containing the RANSAC output
import numpy as np
import pycolmap
from PIL import Image, ImageOps
# Input should be grayscale image with range [0, 1].
with open('image.jpg', 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
img = ImageOps.grayscale(img)
img = np.array(img).astype(np.float) / 255.
# Parameters:
# - image: HxW float array
# Named parameters:
# - num_octaves: int (4)
# - octave_resolution: int (3)
# - first_octave: int (0)
# - edge_thresh: float (10)
# - peak_thresh: float (0.01)
# - upright: bool (False)
keypoints, scores, descriptors = pycolmap.extract_sift(img)
# Returns:
# - keypoints: Nx4 array; format: x (j), y (i), sigma, angle
# - scores: N array; DoG scores
# - descriptors: Nx128 array; L2-normalized descriptors
- Add documentation
- Add more detailed examples