Skip to content

Latest commit

 

History

History
44 lines (35 loc) · 2.65 KB

README.md

File metadata and controls

44 lines (35 loc) · 2.65 KB

Dreaming of Electrical Waves: Generative Modeling of Cardiac Excitation Waves using Diffusion Models

https://arxiv.org/abs/2312.14830

Description

This repository contains all the code files used to generate the results from the paper. Each folder corresponds to the code for different portions of the paper, and has a corresponding requirements.txt file. Each folder also has an associated README.md file containing installation information and information on how to run the models.

Tasks Base Folder Command to Run Training
Task 1 palette-diffusion/ python run.py -c config/conditional.json -p train
Task 2 point-voxel-diffusion/ python train_generation.py
Task 3 palette-diffusion/ python run.py -c config/next_timestep.json -p train
Task 4 palette-diffusion/ python run.py -c config/spiral_3d.json -p train
Task 5 palette-diffusion/ python run.py -c config/inpainting_2d_time.json -p train
Task 6 unconditional-diffusion/ bash script.sh

Citation

@article{baranwal2023dreaming,
      title={Dreaming of Electrical Waves: Generative Modeling of Cardiac Excitation Waves using Diffusion Models}, 
      author={Tanish Baranwal and Jan Lebert and Jan Christoph},
      year={2023},
      eprint={2312.14830},
      archivePrefix={arXiv},
      primaryClass={physics.med-ph}
}

Acknowledgements

We are benefiting a lot from the following projects: