forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcgan_rockpaperscissor_tensorflow.py
344 lines (272 loc) · 13 KB
/
cgan_rockpaperscissor_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import cv2
import tensorflow as tf
from tensorflow.keras import layers
from IPython import display
import matplotlib.pyplot as plt
import numpy as np
import time
import tensorflow_datasets as tfds
from matplotlib import gridspec
ds = tfds.load('RockPaperScissors', split='train', as_supervised=True, shuffle_files=True)
ds = ds.shuffle(1000).batch(128)
# Create dictionary of target classes
label_dict = {
0: 'Rock',
1: 'Paper',
2: 'Scissors'
}
plt.figure(figsize=(10, 10))
for image, label in ds.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
lab = np.array(label[i])
plt.text(0.5, -0.1, s = label_dict[int(lab)], horizontalalignment='center',
verticalalignment='center', transform = ax.transAxes, fontsize=20)
plt.imshow(image[i])
plt.axis("off")
plt.show
@tf.function
def normalization(tensor):
#normalized_ds = data.map(lambda x: normalization_layer(x))
tensor = tf.image.resize(
tensor, (128,128))
tensor = tf.subtract(tf.divide(tensor, 127.5), 1)
return tensor
for img, label in ds.take(1):
img = tf.cast(img, tf.float32)
imgs = normalization(img)
print(imgs.shape)
BATCH_SIZE=128
latent_dim = 100
# label input
con_label = layers.Input(shape=(1,))
# latent vector input
latent_vector = layers.Input(shape=(latent_dim,))
def label_conditioned_generator(n_classes=3, embedding_dim=100):
# embedding for categorical input
label_embedding = layers.Embedding(n_classes, embedding_dim)(con_label)
# linear multiplication
nodes = 4 * 4
label_dense = layers.Dense(nodes)(label_embedding)
# reshape to additional channel
label_reshape_layer = layers.Reshape((4, 4, 1))(label_dense)
return label_reshape_layer
def latent_input(latent_dim=100):
# image generator input
nodes = 512 * 4 * 4
latent_dense = layers.Dense(nodes)(latent_vector)
latent_dense = layers.ReLU()(latent_dense)
latent_reshape = layers.Reshape((4, 4, 512))(latent_dense)
return latent_reshape
# define the final generator model
def define_generator():
label_output = label_conditioned_generator()
latent_vector_output= latent_input()
# merge label_conditioned_generator and latent_input output
merge = layers.Concatenate()([latent_vector_output, label_output])
x = layers.Conv2DTranspose(64 * 8, kernel_size=4, strides= 2, padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, name='conv_transpose_1')(merge)
x = layers.BatchNormalization(momentum=0.1, epsilon=0.8, center=1.0, scale=0.02, name='bn_1')(x)
x = layers.ReLU(name='relu_1')(x)
x = layers.Conv2DTranspose(64 * 4, kernel_size=4, strides= 2, padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, name='conv_transpose_2')(x)
x = layers.BatchNormalization(momentum=0.1, epsilon=0.8, center=1.0, scale=0.02, name='bn_2')(x)
x = layers.ReLU(name='relu_2')(x)
x = layers.Conv2DTranspose(64 * 2, 4, 2, padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, name='conv_transpose_3')(x)
x = layers.BatchNormalization(momentum=0.1, epsilon=0.8, center=1.0, scale=0.02, name='bn_3')(x)
x = layers.ReLU(name='relu_3')(x)
x = layers.Conv2DTranspose(64 * 1, 4, 2, padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, name='conv_transpose_4')(x)
x = layers.BatchNormalization(momentum=0.1, epsilon=0.8, center=1.0, scale=0.02, name='bn_4')(x)
x = layers.ReLU(name='relu_4')(x)
out_layer = layers.Conv2DTranspose(3, 4, 2,padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, activation='tanh', name='conv_transpose_6')(x)
# define model
model = tf.keras.Model([latent_vector, con_label], out_layer)
return model
conditional_gen = define_generator()
print(conditional_gen.summary())
def label_condition_disc(in_shape=(128,128,3), n_classes=3, embedding_dim=100):
# label input
con_label = layers.Input(shape=(1,))
# embedding for categorical input
label_embedding = layers.Embedding(n_classes, embedding_dim)(con_label)
# scale up to image dimensions with linear activation
nodes = in_shape[0] * in_shape[1] * in_shape[2]
label_dense = layers.Dense(nodes)(label_embedding)
# reshape to additional channel
label_reshape_layer = layers.Reshape((in_shape[0], in_shape[1], 3))(label_dense)
# image input
return con_label, label_reshape_layer
def image_disc(in_shape=(128,128,3)):
inp_image = layers.Input(shape=in_shape)
return inp_image
def define_discriminator():
con_label, label_condition_output = label_condition_disc()
inp_image_output = image_disc()
# concat label as a channel
merge = layers.Concatenate()([inp_image_output, label_condition_output])
x = layers.Conv2D(64, kernel_size=4, strides= 2, padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, name='conv_1')(merge)
x = layers.LeakyReLU(0.2, name='leaky_relu_1')(x)
x = layers.Conv2D(64 * 2, kernel_size=4, strides= 3, padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, name='conv_2')(x)
x = layers.BatchNormalization(momentum=0.1, epsilon=0.8, center=1.0, scale=0.02, name='bn_1')(x)
x = layers.LeakyReLU(0.2, name='leaky_relu_2')(x)
x = layers.Conv2D(64 * 4, 4, 3, padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, name='conv_3')(x)
x = layers.BatchNormalization(momentum=0.1, epsilon=0.8, center=1.0, scale=0.02, name='bn_2')(x)
x = layers.LeakyReLU(0.2, name='leaky_relu_3')(x)
x = layers.Conv2D(64 * 8, 4, 3,padding='same', kernel_initializer=tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.02), use_bias=False, name='conv_5')(x)
x = layers.BatchNormalization(momentum=0.1, epsilon=0.8, center=1.0, scale=0.02, name='bn_4')(x)
x = layers.LeakyReLU(0.2, name='leaky_relu_5')(x)
flattened_out = layers.Flatten()(x)
# dropout
dropout = layers.Dropout(0.4)(flattened_out)
# output
dense_out = layers.Dense(1, activation='sigmoid')(dropout)
# define model
# define model
model = tf.keras.Model([inp_image_output, con_label], dense_out)
return model
conditional_discriminator = define_discriminator()
print(conditional_discriminator.summary())
embeddings = conditional_gen.layers[3]
weights = embeddings.get_weights()[0]
print(weights.shape)
binary_cross_entropy = tf.keras.losses.BinaryCrossentropy()
def generator_loss(label, fake_output):
gen_loss = binary_cross_entropy(label, fake_output)
return gen_loss
def discriminator_loss(label, output):
disc_loss = binary_cross_entropy(label, output)
return disc_loss
learning_rate = 0.0002
generator_optimizer = tf.keras.optimizers.Adam(lr = 0.0002, beta_1 = 0.5, beta_2 = 0.999 )
discriminator_optimizer = tf.keras.optimizers.Adam(lr = 0.0002, beta_1 = 0.5, beta_2 = 0.999 )
num_examples_to_generate = 25
# We will reuse this seed overtime to visualize progress
seed = tf.random.normal([num_examples_to_generate, latent_dim])
seed.dtype
def generate_and_save_images(model, epoch, test_input):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
labels = label_gen(n_classes=3)
predictions = model([test_input, labels], training=False)
print(predictions.shape)
fig = plt.figure(figsize=(8,8))
print("Generated Images are Conditioned on Label:", label_dict[np.array(labels)[0]])
for i in range(predictions.shape[0]):
plt.subplot(5, 5, i+1)
pred = (predictions[i, :, :, :] + 1 ) * 127.5
pred = np.array(pred)
plt.imshow(pred.astype(np.uint8))
plt.axis('off')
plt.savefig('rock-paper-scissors/images/image_at_epoch_{:d}.png'.format(epoch))
plt.show()
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images,target):
# noise vector sampled from normal distribution
noise = tf.random.normal([target.shape[0], latent_dim])
# Train Discriminator with real labels
with tf.GradientTape() as disc_tape1:
generated_images = conditional_gen([noise,target], training=True)
print(noise.shape)
print(target.shape)
real_output = conditional_discriminator([images,target], training=True)
real_targets = tf.ones_like(real_output)
disc_loss1 = discriminator_loss(real_targets, real_output)
# gradient calculation for discriminator for real labels
gradients_of_disc1 = disc_tape1.gradient(disc_loss1, conditional_discriminator.trainable_variables)
# parameters optimization for discriminator for real labels
discriminator_optimizer.apply_gradients(zip(gradients_of_disc1,\
conditional_discriminator.trainable_variables))
# Train Discriminator with fake labels
with tf.GradientTape() as disc_tape2:
fake_output = conditional_discriminator([generated_images,target], training=True)
fake_targets = tf.zeros_like(fake_output)
disc_loss2 = discriminator_loss(fake_targets, fake_output)
# gradient calculation for discriminator for fake labels
gradients_of_disc2 = disc_tape2.gradient(disc_loss2, conditional_discriminator.trainable_variables)
# parameters optimization for discriminator for fake labels
discriminator_optimizer.apply_gradients(zip(gradients_of_disc2,\
conditional_discriminator.trainable_variables))
# Train Generator with real labels
with tf.GradientTape() as gen_tape:
generated_images = conditional_gen([noise,target], training=True)
fake_output = conditional_discriminator([generated_images,target], training=True)
real_targets = tf.ones_like(fake_output)
gen_loss = generator_loss(real_targets, fake_output)
# gradient calculation for generator for real labels
gradients_of_gen = gen_tape.gradient(gen_loss, conditional_gen.trainable_variables)
# parameters optimization for generator for real labels
generator_optimizer.apply_gradients(zip(gradients_of_gen,\
conditional_gen.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
start = time.time()
i = 0
D_loss_list, G_loss_list = [], []
for image_batch,target in dataset:
i += 1
img = tf.cast(image_batch, tf.float32)
imgs = normalization(img)
train_step(imgs,target)
print(epoch)
display.clear_output(wait=True)
generate_and_save_images(conditional_gen,
epoch + 1,
seed)
conditional_gen.save_weights('rock-paper-scissors/training_weights/gen_'+ str(epoch)+'.h5')
conditional_discriminator.save_weights('rock-paper-scissors/training_weights/disc_'+ str(epoch)+'.h5')
print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
# Generate after the final epoch
display.clear_output(wait=True)
generate_and_save_images(conditional_gen,
epochs,
seed)
def label_gen(n_classes):
lab = tf.random.uniform((1,), minval=0, maxval=n_classes, dtype=tf.dtypes.int32, seed=None, name=None)
return tf.repeat(lab, [25], axis=None, name=None)
train(ds, 2)
conditional_gen.load_weights('rock-paper-scissors/training_weights/gen_99.h5')
def generate_images(model, test_input):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
output = None
for label in range(3):
labels = tf.ones(10) * label
# predictions = model([labels, test_input], training=False)
predictions = model([test_input, labels], training=False)
if output is None:
output = predictions
else:
output = np.concatenate((output,predictions))
nrow = 3
ncol = 10
fig = plt.figure(figsize=(25,25))
gs = gridspec.GridSpec(nrow, ncol, width_ratios=[1, 1, 1,1, 1,1, 1, 1, 1, 1],
wspace=0.0, hspace=0.0, top=0.2, bottom=0.00, left=0.17, right=0.845)
#output = output.reshape(-1, 128, 128, 3)
#print("Generated Images are Conditioned on Label:", label_dict[np.array(labels)[0]])
k = 0
for i in range(nrow):
for j in range(ncol):
pred = (output[k, :, :, :] + 1 ) * 127.5
pred = np.array(pred)
ax= plt.subplot(gs[i,j])
ax.imshow(pred.astype(np.uint8))
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.axis('off')
k += 1
plt.savefig('result.png', dpi=300)
plt.show()
num_examples_to_generate = 10
latent_dim = 100
noise = tf.random.normal([num_examples_to_generate, latent_dim])
generate_images(conditional_gen, noise)