forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEigenFace.cpp
217 lines (171 loc) · 5.38 KB
/
EigenFace.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#include <iostream>
#include <fstream>
#include <sstream>
#include <opencv2/core/core.hpp>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/opencv.hpp>
#include <dirent.h>
#include <stdlib.h>
#include <time.h>
using namespace cv;
using namespace std;
#define MAX_SLIDER_VALUE 255
#define NUM_EIGEN_FACES 10
// Weights for the different eigenvectors
int sliderValues[NUM_EIGEN_FACES];
// Matrices for average (mean) and eigenvectors
Mat averageFace;
vector<Mat> eigenFaces;
// Read jpg files from the directory
void readImages(string dirName, vector<Mat> &images)
{
cout << "Reading images from " << dirName;
// Add slash to directory name if missing
if (!dirName.empty() && dirName.back() != '/')
dirName += '/';
DIR *dir;
struct dirent *ent;
int count = 0;
//image extensions
string imgExt = "jpg";
vector<string> files;
if ((dir = opendir (dirName.c_str())) != NULL)
{
/* print all the files and directories within directory */
while ((ent = readdir (dir)) != NULL)
{
if(strcmp(ent->d_name,".") == 0 || strcmp(ent->d_name,"..") == 0 )
{
continue;
}
string fname = ent->d_name;
if (fname.find(imgExt, (fname.length() - imgExt.length())) != std::string::npos)
{
string path = dirName + fname;
Mat img = imread(path);
if(!img.data)
{
cout << "image " << path << " not read properly" << endl;
}
else
{
// Convert images to floating point type
img.convertTo(img, CV_32FC3, 1/255.0);
images.push_back(img);
// A vertically flipped image is also a valid face image.
// So lets use them as well.
Mat imgFlip;
flip(img, imgFlip, 1);
images.push_back(imgFlip);
}
}
}
closedir (dir);
}
// Exit program if no images are found
if(images.empty())exit(EXIT_FAILURE);
cout << "... " << images.size() / 2 << " files read"<< endl;
}
// Create data matrix from a vector of images
static Mat createDataMatrix(const vector<Mat> &images)
{
cout << "Creating data matrix from images ...";
// Allocate space for all images in one data matrix.
// The size of the data matrix is
//
// ( w * h * 3, numImages )
//
// where,
//
// w = width of an image in the dataset.
// h = height of an image in the dataset.
// 3 is for the 3 color channels.
Mat data(static_cast<int>(images.size()), images[0].rows * images[0].cols * 3, CV_32F);
// Turn an image into one row vector in the data matrix
for(unsigned int i = 0; i < images.size(); i++)
{
// Extract image as one long vector of size w x h x 3
Mat image = images[i].reshape(1,1);
// Copy the long vector into one row of the destm
image.copyTo(data.row(i));
}
cout << " DONE" << endl;
return data;
}
// Calculate final image by adding weighted
// EigenFaces to the average face.
void createNewFace(int ,void *)
{
// Start with the mean image
Mat output = averageFace.clone();
// Add the eigen faces with the weights
for(int i = 0; i < NUM_EIGEN_FACES; i++)
{
// OpenCV does not allow slider values to be negative.
// So we use weight = sliderValue - MAX_SLIDER_VALUE / 2
double weight = sliderValues[i] - MAX_SLIDER_VALUE/2;
output = output + eigenFaces[i] * weight;
}
resize(output, output, Size(), 2, 2);
imshow("Result", output);
}
// Reset slider values
void resetSliderValues(int event, int x, int y, int flags, void* userdata)
{
if (event == EVENT_LBUTTONDOWN)
{
for(int i = 0; i < NUM_EIGEN_FACES; i++)
{
sliderValues[i] = 128;
setTrackbarPos("Weight" + to_string(i), "Trackbars", MAX_SLIDER_VALUE/2);
}
createNewFace(0,0);
}
}
int main(int argc, char **argv)
{
// Directory containing images
string dirName = "images/";
// Read images in the directory
vector<Mat> images;
readImages(dirName, images);
// Size of images. All images should be the same size.
Size sz = images[0].size();
// Create data matrix for PCA.
Mat data = createDataMatrix(images);
// Calculate PCA of the data matrix
cout << "Calculating PCA ...";
PCA pca(data, Mat(), PCA::DATA_AS_ROW, NUM_EIGEN_FACES);
cout << " DONE"<< endl;
// Extract mean vector and reshape it to obtain average face
averageFace = pca.mean.reshape(3,sz.height);
// Find eigen vectors.
Mat eigenVectors = pca.eigenvectors;
// Reshape Eigenvectors to obtain EigenFaces
for(int i = 0; i < NUM_EIGEN_FACES; i++)
{
Mat eigenFace = eigenVectors.row(i).reshape(3,sz.height);
eigenFaces.push_back(eigenFace);
}
// Show mean face image at 2x the original size
Mat output;
resize(averageFace, output, Size(), 2, 2);
namedWindow("Result", cv::WINDOW_AUTOSIZE);
imshow("Result", output);
// Create trackbars
namedWindow("Trackbars", cv::WINDOW_AUTOSIZE);
for(int i = 0; i < NUM_EIGEN_FACES; i++)
{
sliderValues[i] = MAX_SLIDER_VALUE/2;
createTrackbar( "Weight" + to_string(i), "Trackbars", &sliderValues[i], MAX_SLIDER_VALUE, createNewFace);
}
// You can reset the sliders by clicking on the mean image.
setMouseCallback("Result", resetSliderValues);
cout << "Usage:" << endl
<< "\tChange the weights using the sliders" << endl
<< "\tClick on the result window to reset sliders" << endl
<< "\tHit ESC to terminate program." << endl;
waitKey(0);
destroyAllWindows();
}