forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaceAverage.py
executable file
·294 lines (195 loc) · 8.73 KB
/
faceAverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python
# Copyright (c) 2016 Satya Mallick <[email protected]>
# All rights reserved. No warranty, explicit or implicit, provided.
import os
import cv2
import numpy as np
import math
import sys
# Read points from text files in directory
def readPoints(path) :
# Create an array of array of points.
pointsArray = []
#List all files in the directory and read points from text files one by one
for filePath in sorted(os.listdir(path)):
if filePath.endswith(".txt"):
#Create an array of points.
points = []
# Read points from filePath
with open(os.path.join(path, filePath)) as file :
for line in file :
x, y = line.split()
points.append((int(x), int(y)))
# Store array of points
pointsArray.append(points)
return pointsArray
# Read all jpg images in folder.
def readImages(path) :
#Create array of array of images.
imagesArray = []
#List all files in the directory and read points from text files one by one
for filePath in sorted(os.listdir(path)):
if filePath.endswith(".jpg"):
# Read image found.
img = cv2.imread(os.path.join(path,filePath))
# Convert to floating point
img = np.float32(img)/255.0
# Add to array of images
imagesArray.append(img)
return imagesArray
# Compute similarity transform given two sets of two points.
# OpenCV requires 3 pairs of corresponding points.
# We are faking the third one.
def similarityTransform(inPoints, outPoints) :
s60 = math.sin(60*math.pi/180)
c60 = math.cos(60*math.pi/180)
inPts = np.copy(inPoints).tolist()
outPts = np.copy(outPoints).tolist()
xin = c60*(inPts[0][0] - inPts[1][0]) - s60*(inPts[0][1] - inPts[1][1]) + inPts[1][0]
yin = s60*(inPts[0][0] - inPts[1][0]) + c60*(inPts[0][1] - inPts[1][1]) + inPts[1][1]
inPts.append([np.int(xin), np.int(yin)])
xout = c60*(outPts[0][0] - outPts[1][0]) - s60*(outPts[0][1] - outPts[1][1]) + outPts[1][0]
yout = s60*(outPts[0][0] - outPts[1][0]) + c60*(outPts[0][1] - outPts[1][1]) + outPts[1][1]
outPts.append([np.int(xout), np.int(yout)])
tform = cv2.estimateAffinePartial2D(np.array([inPts]), np.array([outPts]))
return tform[0]
# Check if a point is inside a rectangle
def rectContains(rect, point) :
if point[0] < rect[0] :
return False
elif point[1] < rect[1] :
return False
elif point[0] > rect[2] :
return False
elif point[1] > rect[3] :
return False
return True
# Calculate delanauy triangle
def calculateDelaunayTriangles(rect, points):
# Create subdiv
subdiv = cv2.Subdiv2D(rect)
# Insert points into subdiv
for p in points:
subdiv.insert((p[0], p[1]))
# List of triangles. Each triangle is a list of 3 points ( 6 numbers )
triangleList = subdiv.getTriangleList()
# Find the indices of triangles in the points array
delaunayTri = []
for t in triangleList:
pt = []
pt.append((t[0], t[1]))
pt.append((t[2], t[3]))
pt.append((t[4], t[5]))
pt1 = (t[0], t[1])
pt2 = (t[2], t[3])
pt3 = (t[4], t[5])
if rectContains(rect, pt1) and rectContains(rect, pt2) and rectContains(rect, pt3):
ind = []
for j in range(0, 3):
for k in range(0, len(points)):
if(abs(pt[j][0] - points[k][0]) < 1.0 and abs(pt[j][1] - points[k][1]) < 1.0):
ind.append(k)
if len(ind) == 3:
delaunayTri.append((ind[0], ind[1], ind[2]))
return delaunayTri
def constrainPoint(p, w, h) :
p = ( min( max( p[0], 0 ) , w - 1 ) , min( max( p[1], 0 ) , h - 1 ) )
return p
# Apply affine transform calculated using srcTri and dstTri to src and
# output an image of size.
def applyAffineTransform(src, srcTri, dstTri, size) :
# Given a pair of triangles, find the affine transform.
warpMat = cv2.getAffineTransform( np.float32(srcTri), np.float32(dstTri) )
# Apply the Affine Transform just found to the src image
dst = cv2.warpAffine( src, warpMat, (size[0], size[1]), None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101 )
return dst
# Warps and alpha blends triangular regions from img1 and img2 to img
def warpTriangle(img1, img2, t1, t2) :
# Find bounding rectangle for each triangle
r1 = cv2.boundingRect(np.float32([t1]))
r2 = cv2.boundingRect(np.float32([t2]))
# Offset points by left top corner of the respective rectangles
t1Rect = []
t2Rect = []
t2RectInt = []
for i in range(0, 3):
t1Rect.append(((t1[i][0] - r1[0]),(t1[i][1] - r1[1])))
t2Rect.append(((t2[i][0] - r2[0]),(t2[i][1] - r2[1])))
t2RectInt.append(((t2[i][0] - r2[0]),(t2[i][1] - r2[1])))
# Get mask by filling triangle
mask = np.zeros((r2[3], r2[2], 3), dtype = np.float32)
cv2.fillConvexPoly(mask, np.int32(t2RectInt), (1.0, 1.0, 1.0), 16, 0)
# Apply warpImage to small rectangular patches
img1Rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]]
size = (r2[2], r2[3])
img2Rect = applyAffineTransform(img1Rect, t1Rect, t2Rect, size)
img2Rect = img2Rect * mask
# Copy triangular region of the rectangular patch to the output image
img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] * ( (1.0, 1.0, 1.0) - mask )
img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] + img2Rect
if __name__ == '__main__' :
path = 'presidents/'
# Dimensions of output image
w = 600
h = 600
# Read points for all images
allPoints = readPoints(path)
# Read all images
images = readImages(path)
# Eye corners
eyecornerDst = [ (np.int(0.3 * w ), np.int(h / 3)), (np.int(0.7 * w ), np.int(h / 3)) ]
imagesNorm = []
pointsNorm = []
# Add boundary points for delaunay triangulation
boundaryPts = np.array([(0,0), (w/2,0), (w-1,0), (w-1,h/2), ( w-1, h-1 ), ( w/2, h-1 ), (0, h-1), (0,h/2) ])
# Initialize location of average points to 0s
pointsAvg = np.array([(0,0)]* ( len(allPoints[0]) + len(boundaryPts) ), np.float32())
n = len(allPoints[0])
numImages = len(images)
# Warp images and trasnform landmarks to output coordinate system,
# and find average of transformed landmarks.
for i in range(0, numImages):
points1 = allPoints[i]
# Corners of the eye in input image
eyecornerSrc = [ allPoints[i][36], allPoints[i][45] ]
# Compute similarity transform
tform = similarityTransform(eyecornerSrc, eyecornerDst)
# Apply similarity transformation
img = cv2.warpAffine(images[i], tform, (w,h))
# Apply similarity transform on points
points2 = np.reshape(np.array(points1), (68,1,2))
points = cv2.transform(points2, tform)
points = np.float32(np.reshape(points, (68, 2)))
# Append boundary points. Will be used in Delaunay Triangulation
points = np.append(points, boundaryPts, axis=0)
# Calculate location of average landmark points.
pointsAvg = pointsAvg + points / numImages
pointsNorm.append(points)
imagesNorm.append(img)
# Delaunay triangulation
rect = (0, 0, w, h)
dt = calculateDelaunayTriangles(rect, np.array(pointsAvg))
# Output image
output = np.zeros((h,w,3), np.float32())
# Warp input images to average image landmarks
for i in range(0, len(imagesNorm)) :
img = np.zeros((h,w,3), np.float32())
# Transform triangles one by one
for j in range(0, len(dt)) :
tin = []
tout = []
for k in range(0, 3) :
pIn = pointsNorm[i][dt[j][k]]
pIn = constrainPoint(pIn, w, h)
pOut = pointsAvg[dt[j][k]]
pOut = constrainPoint(pOut, w, h)
tin.append(pIn)
tout.append(pOut)
warpTriangle(imagesNorm[i], img, tin, tout)
# Add image intensities for averaging
output = output + img
# Divide by numImages to get average
output = output / numImages
# Display result
cv2.imshow('image', output)
cv2.waitKey(0)