forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaceSwap.cpp
188 lines (140 loc) · 5.24 KB
/
faceSwap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#include <opencv2/opencv.hpp>
#include <iostream>
#include <fstream>
#include <string>
using namespace cv;
using namespace std;
//Read points from text file
vector<Point2f> readPoints(string pointsFileName){
vector<Point2f> points;
ifstream ifs (pointsFileName.c_str());
float x, y;
int count = 0;
while(ifs >> x >> y)
{
points.push_back(Point2f(x,y));
}
return points;
}
// Apply affine transform calculated using srcTri and dstTri to src
void applyAffineTransform(Mat &warpImage, Mat &src, vector<Point2f> &srcTri, vector<Point2f> &dstTri)
{
// Given a pair of triangles, find the affine transform.
Mat warpMat = getAffineTransform( srcTri, dstTri );
// Apply the Affine Transform just found to the src image
warpAffine( src, warpImage, warpMat, warpImage.size(), INTER_LINEAR, BORDER_REFLECT_101);
}
// Calculate Delaunay triangles for set of points
// Returns the vector of indices of 3 points for each triangle
static void calculateDelaunayTriangles(Rect rect, vector<Point2f> &points, vector< vector<int> > &delaunayTri){
// Create an instance of Subdiv2D
Subdiv2D subdiv(rect);
// Insert points into subdiv
for( vector<Point2f>::iterator it = points.begin(); it != points.end(); it++)
subdiv.insert(*it);
vector<Vec6f> triangleList;
subdiv.getTriangleList(triangleList);
vector<Point2f> pt(3);
vector<int> ind(3);
for( size_t i = 0; i < triangleList.size(); i++ )
{
Vec6f t = triangleList[i];
pt[0] = Point2f(t[0], t[1]);
pt[1] = Point2f(t[2], t[3]);
pt[2] = Point2f(t[4], t[5 ]);
if ( rect.contains(pt[0]) && rect.contains(pt[1]) && rect.contains(pt[2])){
for(int j = 0; j < 3; j++)
for(size_t k = 0; k < points.size(); k++)
if(abs(pt[j].x - points[k].x) < 1.0 && abs(pt[j].y - points[k].y) < 1)
ind[j] = k;
delaunayTri.push_back(ind);
}
}
}
// Warps and alpha blends triangular regions from img1 and img2 to img
void warpTriangle(Mat &img1, Mat &img2, vector<Point2f> &t1, vector<Point2f> &t2)
{
Rect r1 = boundingRect(t1);
Rect r2 = boundingRect(t2);
// Offset points by left top corner of the respective rectangles
vector<Point2f> t1Rect, t2Rect;
vector<Point> t2RectInt;
for(int i = 0; i < 3; i++)
{
t1Rect.push_back( Point2f( t1[i].x - r1.x, t1[i].y - r1.y) );
t2Rect.push_back( Point2f( t2[i].x - r2.x, t2[i].y - r2.y) );
t2RectInt.push_back( Point(t2[i].x - r2.x, t2[i].y - r2.y) ); // for fillConvexPoly
}
// Get mask by filling triangle
Mat mask = Mat::zeros(r2.height, r2.width, CV_32FC3);
fillConvexPoly(mask, t2RectInt, Scalar(1.0, 1.0, 1.0), 16, 0);
// Apply warpImage to small rectangular patches
Mat img1Rect;
img1(r1).copyTo(img1Rect);
Mat img2Rect = Mat::zeros(r2.height, r2.width, img1Rect.type());
applyAffineTransform(img2Rect, img1Rect, t1Rect, t2Rect);
multiply(img2Rect,mask, img2Rect);
multiply(img2(r2), Scalar(1.0,1.0,1.0) - mask, img2(r2));
img2(r2) = img2(r2) + img2Rect;
}
int main( int argc, char** argv)
{
//Read input images
string filename1 = "ted_cruz.jpg";
string filename2 = "donald_trump.jpg";
Mat img1 = imread(filename1);
Mat img2 = imread(filename2);
Mat img1Warped = img2.clone();
//Read points
vector<Point2f> points1, points2;
points1 = readPoints(filename1 + ".txt");
points2 = readPoints(filename2 + ".txt");
//convert Mat to float data type
img1.convertTo(img1, CV_32F);
img1Warped.convertTo(img1Warped, CV_32F);
// Find convex hull
vector<Point2f> hull1;
vector<Point2f> hull2;
vector<int> hullIndex;
convexHull(points2, hullIndex, false, false);
for(int i = 0; i < hullIndex.size(); i++)
{
hull1.push_back(points1[hullIndex[i]]);
hull2.push_back(points2[hullIndex[i]]);
}
// Find delaunay triangulation for points on the convex hull
vector< vector<int> > dt;
Rect rect(0, 0, img1Warped.cols, img1Warped.rows);
calculateDelaunayTriangles(rect, hull2, dt);
// Apply affine transformation to Delaunay triangles
for(size_t i = 0; i < dt.size(); i++)
{
vector<Point2f> t1, t2;
// Get points for img1, img2 corresponding to the triangles
for(size_t j = 0; j < 3; j++)
{
t1.push_back(hull1[dt[i][j]]);
t2.push_back(hull2[dt[i][j]]);
}
warpTriangle(img1, img1Warped, t1, t2);
}
// Calculate mask
vector<Point> hull8U;
for(int i = 0; i < hull2.size(); i++)
{
Point pt(hull2[i].x, hull2[i].y);
hull8U.push_back(pt);
}
Mat mask = Mat::zeros(img2.rows, img2.cols, img2.depth());
fillConvexPoly(mask,&hull8U[0], hull8U.size(), Scalar(255,255,255));
// Clone seamlessly.
Rect r = boundingRect(hull2);
Point center = (r.tl() + r.br()) / 2;
Mat output;
img1Warped.convertTo(img1Warped, CV_8UC3);
seamlessClone(img1Warped,img2, mask, center, output, NORMAL_CLONE);
imshow("Face Swapped", output);
waitKey(0);
destroyAllWindows();
return 1;
}