forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.cpp
363 lines (270 loc) · 11.7 KB
/
demo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#include <iostream>
#include <string>
#include <vector>
#include <unordered_map>
#include <stdlib.h>
#include <chrono>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/video.hpp>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudawarping.hpp>
#include <opencv2/cudaoptflow.hpp>
using namespace cv;
using namespace cv::cuda;
using namespace std;
using namespace std::chrono;
void calculate_optical_flow(string videoFileName, string device)
{
// init map to track time for every stage at each iteration
unordered_map<string, vector<double>> timers;
// init video capture with video
VideoCapture capture(videoFileName);
if (!capture.isOpened())
{
// error in opening the video file
cout << "Unable to open file!" << endl;
return;
}
// get default video FPS
double fps = capture.get(CAP_PROP_FPS);
// get total number of video frames
int num_frames = int(capture.get(CAP_PROP_FRAME_COUNT));
// read the first frame
cv::Mat frame, previous_frame;
capture >> frame;
if (device == "cpu")
{
// resize frame
cv::resize(frame, frame, Size(960, 540), 0, 0, INTER_LINEAR);
// convert to gray
cv::cvtColor(frame, previous_frame, COLOR_BGR2GRAY);
// declare outputs for optical flow
cv::Mat magnitude, normalized_magnitude, angle;
cv::Mat hsv[3], merged_hsv, hsv_8u, bgr;
// set saturation to 1
hsv[1] = cv::Mat::ones(frame.size(), CV_32F);
while (true)
{
// start full pipeline timer
auto start_full_time = high_resolution_clock::now();
// start reading timer
auto start_read_time = high_resolution_clock::now();
// capture frame-by-frame
capture >> frame;
if (frame.empty())
break;
// end reading timer
auto end_read_time = high_resolution_clock::now();
// add elapsed iteration time
timers["reading"].push_back(duration_cast<milliseconds>(end_read_time - start_read_time).count() / 1000.0);
// start pre-process timer
auto start_pre_time = high_resolution_clock::now();
// resize frame
cv::resize(frame, frame, Size(960, 540), 0, 0, INTER_LINEAR);
// convert to gray
cv::Mat current_frame;
cv::cvtColor(frame, current_frame, COLOR_BGR2GRAY);
// end pre-process timer
auto end_pre_time = high_resolution_clock::now();
// add elapsed iteration time
timers["pre-process"].push_back(duration_cast<milliseconds>(end_pre_time - start_pre_time).count() / 1000.0);
// start optical flow timer
auto start_of_time = high_resolution_clock::now();
// calculate optical flow
cv::Mat flow;
calcOpticalFlowFarneback(previous_frame, current_frame, flow, 0.5, 5, 15, 3, 5, 1.2, 0);
// end optical flow timer
auto end_of_time = high_resolution_clock::now();
// add elapsed iteration time
timers["optical flow"].push_back(duration_cast<milliseconds>(end_of_time - start_of_time).count() / 1000.0);
// start post-process timer
auto start_post_time = high_resolution_clock::now();
// split the output flow into 2 vectors
cv::Mat flow_xy[2], flow_x, flow_y;
split(flow, flow_xy);
// get the result
flow_x = flow_xy[0];
flow_y = flow_xy[1];
// convert from cartesian to polar coordinates
cv::cartToPolar(flow_x, flow_y, magnitude, angle, true);
// normalize magnitude from 0 to 1
cv::normalize(magnitude, normalized_magnitude, 0.0, 1.0, NORM_MINMAX);
// get angle of optical flow
angle *= ((1 / 360.0) * (180 / 255.0));
// build hsv image
hsv[0] = angle;
hsv[2] = normalized_magnitude;
merge(hsv, 3, merged_hsv);
// multiply each pixel value to 255
merged_hsv.convertTo(hsv_8u, CV_8U, 255);
// convert hsv to bgr
cv::cvtColor(hsv_8u, bgr, COLOR_HSV2BGR);
// update previous_frame value
previous_frame = current_frame;
// end post pipeline timer
auto end_post_time = high_resolution_clock::now();
// add elapsed iteration time
timers["post-process"].push_back(duration_cast<milliseconds>(end_post_time - start_post_time).count() / 1000.0);
// end full pipeline timer
auto end_full_time = high_resolution_clock::now();
// add elapsed iteration time
timers["full pipeline"].push_back(duration_cast<milliseconds>(end_full_time - start_full_time).count() / 1000.0);
// visualization
imshow("original", frame);
imshow("result", bgr);
int keyboard = waitKey(1);
if (keyboard == 27)
break;
}
}
else
{
// resize frame
cv::resize(frame, frame, Size(960, 540), 0, 0, INTER_LINEAR);
// convert to gray
cv::cvtColor(frame, previous_frame, COLOR_BGR2GRAY);
// upload pre-processed frame to GPU
cv::cuda::GpuMat gpu_previous;
gpu_previous.upload(previous_frame);
// declare cpu outputs for optical flow
cv::Mat hsv[3], angle, bgr;
// declare gpu outputs for optical flow
cv::cuda::GpuMat gpu_magnitude, gpu_normalized_magnitude, gpu_angle;
cv::cuda::GpuMat gpu_hsv[3], gpu_merged_hsv, gpu_hsv_8u, gpu_bgr;
// set saturation to 1
hsv[1] = cv::Mat::ones(frame.size(), CV_32F);
gpu_hsv[1].upload(hsv[1]);
while (true)
{
// start full pipeline timer
auto start_full_time = high_resolution_clock::now();
// start reading timer
auto start_read_time = high_resolution_clock::now();
// capture frame-by-frame
capture >> frame;
if (frame.empty())
break;
// upload frame to GPU
cv::cuda::GpuMat gpu_frame;
gpu_frame.upload(frame);
// end reading timer
auto end_read_time = high_resolution_clock::now();
// add elapsed iteration time
timers["reading"].push_back(duration_cast<milliseconds>(end_read_time - start_read_time).count() / 1000.0);
// start pre-process timer
auto start_pre_time = high_resolution_clock::now();
// resize frame
cv::cuda::resize(gpu_frame, gpu_frame, Size(960, 540), 0, 0, INTER_LINEAR);
// convert to gray
cv::cuda::GpuMat gpu_current;
cv::cuda::cvtColor(gpu_frame, gpu_current, COLOR_BGR2GRAY);
// end pre-process timer
auto end_pre_time = high_resolution_clock::now();
// add elapsed iteration time
timers["pre-process"].push_back(duration_cast<milliseconds>(end_pre_time - start_pre_time).count() / 1000.0);
// start optical flow timer
auto start_of_time = high_resolution_clock::now();
// create optical flow instance
Ptr<cuda::FarnebackOpticalFlow> ptr_calc = cuda::FarnebackOpticalFlow::create(5, 0.5, false, 15, 3, 5, 1.2, 0);
// calculate optical flow
cv::cuda::GpuMat gpu_flow;
ptr_calc->calc(gpu_previous, gpu_current, gpu_flow);
// end optical flow timer
auto end_of_time = high_resolution_clock::now();
// add elapsed iteration time
timers["optical flow"].push_back(duration_cast<milliseconds>(end_of_time - start_of_time).count() / 1000.0);
// start post-process timer
auto start_post_time = high_resolution_clock::now();
// split the output flow into 2 vectors
cv::cuda::GpuMat gpu_flow_xy[2];
cv::cuda::split(gpu_flow, gpu_flow_xy);
// convert from cartesian to polar coordinates
cv::cuda::cartToPolar(gpu_flow_xy[0], gpu_flow_xy[1], gpu_magnitude, gpu_angle, true);
// normalize magnitude from 0 to 1
cv::cuda::normalize(gpu_magnitude, gpu_normalized_magnitude, 0.0, 1.0, NORM_MINMAX, -1);
// get angle of optical flow
gpu_angle.download(angle);
angle *= ((1 / 360.0) * (180 / 255.0));
// build hsv image
gpu_hsv[0].upload(angle);
gpu_hsv[2] = gpu_normalized_magnitude;
cv::cuda::merge(gpu_hsv, 3, gpu_merged_hsv);
// multiply each pixel value to 255
gpu_merged_hsv.cv::cuda::GpuMat::convertTo(gpu_hsv_8u, CV_8U, 255.0);
// convert hsv to bgr
cv::cuda::cvtColor(gpu_hsv_8u, gpu_bgr, COLOR_HSV2BGR);
// send original frame from GPU back to CPU
gpu_frame.download(frame);
// send result from GPU back to CPU
gpu_bgr.download(bgr);
// update previous_frame value
gpu_previous = gpu_current;
// end post pipeline timer
auto end_post_time = high_resolution_clock::now();
// add elapsed iteration time
timers["post-process"].push_back(duration_cast<milliseconds>(end_post_time - start_post_time).count() / 1000.0);
// end full pipeline timer
auto end_full_time = high_resolution_clock::now();
// add elapsed iteration time
timers["full pipeline"].push_back(duration_cast<milliseconds>(end_full_time - start_full_time).count() / 1000.0);
// visualization
imshow("original", frame);
imshow("result", bgr);
int keyboard = waitKey(1);
if (keyboard == 27)
break;
}
}
// release the capture
capture.release();
// destroy all windows
destroyAllWindows();
// print results
cout << "Number of frames: " << num_frames << std::endl;
// elapsed time at each stage
cout << "Elapsed time" << std::endl;
for (auto const& timer : timers)
{
cout << "- " << timer.first << " : " << accumulate(timer.second.begin(), timer.second.end(), 0.0) << " seconds"<< endl;
}
// calculate frames per second
cout << "Default video FPS : " << fps << endl;
float optical_flow_fps = (num_frames - 1) / accumulate(timers["optical flow"].begin(), timers["optical flow"].end(), 0.0);
cout << "Optical flow FPS : " << optical_flow_fps << endl;
float full_pipeline_fps = (num_frames - 1) / accumulate(timers["full pipeline"].begin(), timers["full pipeline"].end(), 0.0);
cout << "Full pipeline FPS : " << full_pipeline_fps << endl;
}
int main( int argc, const char** argv )
{
string videoFileName;
string device;
// parse arguments from command line
if (argc == 3)
{
videoFileName = argv[1];
device = argv[2];
}
else if (argc == 2)
{
videoFileName = argv[1];
device = "cpu";
}
else
{
cout << "Please input video filename." << endl;
cout << "Usage example: ./demo.out video/boat.mp4" << endl;
cout << "If you want to use GPU device instead of CPU, add one more argument." << endl;
cout << "Usage example: ./demo.out video/boat.mp4 gpu" << endl;
return 1;
}
// output passed arguments
cout << "Configuration" << endl;
cout << "- device : "<< device << endl;
cout << "- video file : " << videoFileName << endl;
calculate_optical_flow(videoFileName, device);
return 0;
}