forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
333 lines (239 loc) · 10.3 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import time
import cv2
import numpy as np
def main(video, device):
# init dict to track time for every stage at each iteration
timers = {
"full pipeline": [],
"reading": [],
"pre-process": [],
"optical flow": [],
"post-process": [],
}
# init video capture with video
cap = cv2.VideoCapture(video)
# get default video FPS
fps = cap.get(cv2.CAP_PROP_FPS)
# get total number of video frames
num_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
# read the first frame
ret, previous_frame = cap.read()
if device == "cpu":
# proceed if frame reading was successful
if ret:
# resize frame
frame = cv2.resize(previous_frame, (960, 540))
# convert to gray
previous_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# create hsv output for optical flow
hsv = np.zeros_like(frame, np.float32)
# set saturation to 1
hsv[..., 1] = 1.0
while True:
# start full pipeline timer
start_full_time = time.time()
# start reading timer
start_read_time = time.time()
# capture frame-by-frame
ret, frame = cap.read()
# end reading timer
end_read_time = time.time()
# add elapsed iteration time
timers["reading"].append(end_read_time - start_read_time)
# if frame reading was not successful, break
if not ret:
break
# start pre-process timer
start_pre_time = time.time()
# resize frame
frame = cv2.resize(frame, (960, 540))
# convert to gray
current_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# end pre-process timer
end_pre_time = time.time()
# add elapsed iteration time
timers["pre-process"].append(end_pre_time - start_pre_time)
# start optical flow timer
start_of = time.time()
# calculate optical flow
flow = cv2.calcOpticalFlowFarneback(
previous_frame, current_frame, None, 0.5, 5, 15, 3, 5, 1.2, 0,
)
# end of timer
end_of = time.time()
# add elapsed iteration time
timers["optical flow"].append(end_of - start_of)
# start post-process timer
start_post_time = time.time()
# convert from cartesian to polar coordinates to get magnitude and angle
magnitude, angle = cv2.cartToPolar(
flow[..., 0], flow[..., 1], angleInDegrees=True,
)
# set hue according to the angle of optical flow
hsv[..., 0] = angle * ((1 / 360.0) * (180 / 255.0))
# set value according to the normalized magnitude of optical flow
hsv[..., 2] = cv2.normalize(
magnitude, None, 0.0, 1.0, cv2.NORM_MINMAX, -1,
)
# multiply each pixel value to 255
hsv_8u = np.uint8(hsv * 255.0)
# convert hsv to bgr
bgr = cv2.cvtColor(hsv_8u, cv2.COLOR_HSV2BGR)
# update previous_frame value
previous_frame = current_frame
# end post-process timer
end_post_time = time.time()
# add elapsed iteration time
timers["post-process"].append(end_post_time - start_post_time)
# end full pipeline timer
end_full_time = time.time()
# add elapsed iteration time
timers["full pipeline"].append(end_full_time - start_full_time)
# visualization
cv2.imshow("original", frame)
cv2.imshow("result", bgr)
k = cv2.waitKey(1)
if k == 27:
break
else:
# proceed if frame reading was successful
if ret:
# resize frame
frame = cv2.resize(previous_frame, (960, 540))
# upload resized frame to GPU
gpu_frame = cv2.cuda_GpuMat()
gpu_frame.upload(frame)
# convert to gray
previous_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# upload pre-processed frame to GPU
gpu_previous = cv2.cuda_GpuMat()
gpu_previous.upload(previous_frame)
# create gpu_hsv output for optical flow
gpu_hsv = cv2.cuda_GpuMat(gpu_frame.size(), cv2.CV_32FC3)
gpu_hsv_8u = cv2.cuda_GpuMat(gpu_frame.size(), cv2.CV_8UC3)
gpu_h = cv2.cuda_GpuMat(gpu_frame.size(), cv2.CV_32FC1)
gpu_s = cv2.cuda_GpuMat(gpu_frame.size(), cv2.CV_32FC1)
gpu_v = cv2.cuda_GpuMat(gpu_frame.size(), cv2.CV_32FC1)
# set saturation to 1
gpu_s.upload(np.ones_like(previous_frame, np.float32))
while True:
# start full pipeline timer
start_full_time = time.time()
# start reading timer
start_read_time = time.time()
# capture frame-by-frame
ret, frame = cap.read()
# upload frame to GPU
gpu_frame.upload(frame)
# end reading timer
end_read_time = time.time()
# add elapsed iteration time
timers["reading"].append(end_read_time - start_read_time)
# if frame reading was not successful, break
if not ret:
break
# start pre-process timer
start_pre_time = time.time()
# resize frame
gpu_frame = cv2.cuda.resize(gpu_frame, (960, 540))
# convert to gray
gpu_current = cv2.cuda.cvtColor(gpu_frame, cv2.COLOR_BGR2GRAY)
# end pre-process timer
end_pre_time = time.time()
# add elapsed iteration time
timers["pre-process"].append(end_pre_time - start_pre_time)
# start optical flow timer
start_of = time.time()
# create optical flow instance
gpu_flow = cv2.cuda_FarnebackOpticalFlow.create(
5, 0.5, False, 15, 3, 5, 1.2, 0,
)
# calculate optical flow
gpu_flow = cv2.cuda_FarnebackOpticalFlow.calc(
gpu_flow, gpu_previous, gpu_current, None,
)
# end of timer
end_of = time.time()
# add elapsed iteration time
timers["optical flow"].append(end_of - start_of)
# start post-process timer
start_post_time = time.time()
gpu_flow_x = cv2.cuda_GpuMat(gpu_flow.size(), cv2.CV_32FC1)
gpu_flow_y = cv2.cuda_GpuMat(gpu_flow.size(), cv2.CV_32FC1)
cv2.cuda.split(gpu_flow, [gpu_flow_x, gpu_flow_y])
# convert from cartesian to polar coordinates to get magnitude and angle
gpu_magnitude, gpu_angle = cv2.cuda.cartToPolar(
gpu_flow_x, gpu_flow_y, angleInDegrees=True,
)
# set value to normalized magnitude from 0 to 1
gpu_v = cv2.cuda.normalize(gpu_magnitude, 0.0, 1.0, cv2.NORM_MINMAX, -1)
# get angle of optical flow
angle = gpu_angle.download()
angle *= (1 / 360.0) * (180 / 255.0)
# set hue according to the angle of optical flow
gpu_h.upload(angle)
# merge h,s,v channels
cv2.cuda.merge([gpu_h, gpu_s, gpu_v], gpu_hsv)
# multiply each pixel value to 255
gpu_hsv.convertTo(cv2.CV_8U, 255.0, gpu_hsv_8u, 0.0)
# convert hsv to bgr
gpu_bgr = cv2.cuda.cvtColor(gpu_hsv_8u, cv2.COLOR_HSV2BGR)
# send original frame from GPU back to CPU
frame = gpu_frame.download()
# send result from GPU back to CPU
bgr = gpu_bgr.download()
# update previous_frame value
gpu_previous = gpu_current
# end post-process timer
end_post_time = time.time()
# add elapsed iteration time
timers["post-process"].append(end_post_time - start_post_time)
# end full pipeline timer
end_full_time = time.time()
# add elapsed iteration time
timers["full pipeline"].append(end_full_time - start_full_time)
# visualization
cv2.imshow("original", frame)
cv2.imshow("result", bgr)
k = cv2.waitKey(1)
if k == 27:
break
# release the capture
cap.release()
# destroy all windows
cv2.destroyAllWindows()
# print results
print("Number of frames : ", num_frames)
# elapsed time at each stage
print("Elapsed time")
for stage, seconds in timers.items():
print("-", stage, ": {:0.3f} seconds".format(sum(seconds)))
# calculate frames per second
print("Default video FPS : {:0.3f}".format(fps))
of_fps = (num_frames - 1) / sum(timers["optical flow"])
print("Optical flow FPS : {:0.3f}".format(of_fps))
full_fps = (num_frames - 1) / sum(timers["full pipeline"])
print("Full pipeline FPS : {:0.3f}".format(full_fps))
if __name__ == "__main__":
# init argument parser
parser = argparse.ArgumentParser(description="OpenCV CPU/GPU Comparison")
parser.add_argument(
"--video", help="path to .mp4 video file", required=True, type=str,
)
parser.add_argument(
"--device",
default="cpu",
choices=["cpu", "gpu"],
help="device to inference on",
)
# parsing script arguments
args = parser.parse_args()
video = args.video
device = args.device
# output passed arguments
print("Configuration")
print("- device : ", device)
print("- video file : ", video)
# run pipeline
main(video, device)