forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
110 lines (79 loc) · 3.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from dataset import load_data
from models import MRnet
from config import config
import torch
from torch.utils.tensorboard import SummaryWriter
from utils import _train_model, _evaluate_model, _get_lr
import time
import torch.utils.data as data
import os
"""Performs training of a specified model.
Input params:
config_file: Takes in configurations to train with
"""
def train(config : dict):
"""
Function where actual training takes place
Args:
config (dict) : Configuration to train with
"""
print('Starting to Train Model...')
train_loader, val_loader, train_wts, val_wts = load_data(config['task'])
print('Initializing Model...')
model = MRnet()
if torch.cuda.is_available():
model = model.cuda()
train_wts = train_wts.cuda()
val_wts = val_wts.cuda()
print('Initializing Loss Method...')
criterion = torch.nn.BCEWithLogitsLoss(pos_weight=train_wts)
val_criterion = torch.nn.BCEWithLogitsLoss(pos_weight=val_wts)
if torch.cuda.is_available():
criterion = criterion.cuda()
val_criterion = val_criterion.cuda()
print('Setup the Optimizer')
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], weight_decay=config['weight_decay'])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, patience=3, factor=.3, threshold=1e-4, verbose=True)
starting_epoch = config['starting_epoch']
num_epochs = config['max_epoch']
patience = config['patience']
log_train = config['log_train']
log_val = config['log_val']
best_val_loss = float('inf')
best_val_auc = float(0)
print('Starting Training')
writer = SummaryWriter(comment='lr={} task={}'.format(config['lr'], config['task']))
t_start_training = time.time()
for epoch in range(starting_epoch, num_epochs):
current_lr = _get_lr(optimizer)
epoch_start_time = time.time() # timer for entire epoch
train_loss, train_auc = _train_model(
model, train_loader, epoch, num_epochs, optimizer, criterion, writer, current_lr, log_train)
val_loss, val_auc = _evaluate_model(
model, val_loader, val_criterion, epoch, num_epochs, writer, current_lr, log_val)
writer.add_scalar('Train/Avg Loss', train_loss, epoch)
writer.add_scalar('Val/Avg Loss', val_loss, epoch)
scheduler.step(val_loss)
t_end = time.time()
delta = t_end - epoch_start_time
print("train loss : {0} | train auc {1} | val loss {2} | val auc {3} | elapsed time {4} s".format(
train_loss, train_auc, val_loss, val_auc, delta))
print('-' * 30)
writer.flush()
if val_auc > best_val_auc:
best_val_auc = val_auc
if bool(config['save_model']):
file_name = 'model_{}_{}_val_auc_{:0.4f}_train_auc_{:0.4f}_epoch_{}.pth'.format(config['exp_name'], config['task'], val_auc, train_auc, epoch+1)
torch.save({
'model_state_dict': model.state_dict()
}, './weights/{}/{}'.format(config['task'],file_name))
t_end_training = time.time()
print(f'training took {t_end_training - t_start_training} s')
writer.flush()
writer.close()
if __name__ == '__main__':
print('Training Configuration')
print(config)
train(config=config)
print('Training Ended...')