forked from THUDM/ChatGLM3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
openai_api_request.py
99 lines (86 loc) · 3.02 KB
/
openai_api_request.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
This script is an example of using the OpenAI API to create various interactions with a ChatGLM3 model.
It includes functions to:
1. Conduct a basic chat session, asking about weather conditions in multiple cities.
2. Initiate a simple chat in Chinese, asking the model to tell a short story.
3. Retrieve and print embeddings for a given text input.
Each function demonstrates a different aspect of the API's capabilities, showcasing how to make requests
and handle responses.
"""
from openai import OpenAI
base_url = "http://127.0.0.1:8000/v1/"
client = OpenAI(api_key="EMPTY", base_url=base_url)
def function_chat():
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = client.chat.completions.create(
model="chatglm3-6b",
messages=messages,
tools=tools,
tool_choice="auto",
)
if response:
content = response.choices[0].message.content
print(content)
else:
print("Error:", response.status_code)
def simple_chat(use_stream=True):
messages = [
{
"role": "system",
"content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's "
"instructions carefully. Respond using markdown.",
},
{
"role": "user",
"content": "你好,请你用生动的话语给我讲一个小故事吧"
}
]
response = client.chat.completions.create(
model="chatglm3-6b",
messages=messages,
stream=use_stream,
max_tokens=256,
temperature=0.8,
presence_penalty=1.1,
top_p=0.8)
if response:
if use_stream:
for chunk in response:
print(chunk.choices[0].delta.content)
else:
content = response.choices[0].message.content
print(content)
else:
print("Error:", response.status_code)
def embedding():
response = client.embeddings.create(
model="bge-large-zh-1.5",
input=["你好,给我讲一个故事,大概100字"],
)
embeddings = response.data[0].embedding
print("嵌入完成,维度:", len(embeddings))
if __name__ == "__main__":
simple_chat(use_stream=False)
simple_chat(use_stream=True)
embedding()
function_chat()