-
Notifications
You must be signed in to change notification settings - Fork 0
/
arena_runner.py
95 lines (65 loc) · 3.94 KB
/
arena_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from run_competition_chameleon import Competition_Chameleon
from run_competition_undercover import Competition_Under_Cover
from run_competition_airportfee import Competition_Airportfee
from run_competition_prisoner import Competition_Prisoner
from run_competition_public_good import Competition_Public_Good
import openai
import time
import copy
import os
# 获取当前文件的绝对路径
current_file = os.path.abspath(__file__)
# 获取当前文件的目录
current_dir = os.path.dirname(current_file)
# 获取utils目录的路径
utils_dir = os.path.join(current_dir, 'utils')
config_dir= os.path.join(current_dir, 'config_templates')
print(config_dir)
print('!!!!!\n\n')
chameleon_competition='competition_as_chameleon'
non_chameleon_competition='competition_as_non_chameleon'
undercover_competition='competition_as_undercover'
non_undercover_competition='competition_as_non_undercover'
airport_competition='competition_airportfee'
prisoner_competition='competition_prisoner'
public_good_competition='competition_public_good'
# result_dir = 'results/idata_bs32'
# result_dir = 'results_groq'
result_dir = 'results/results_o1'
save_dir=os.path.join(current_dir, result_dir)
def run(chatbox=None):
# if chatbox is not None:
# global_config.chatbox = chatbox
test_player_model_name='o1-preview-pgm'
base_player_model_name='gpt-4'
fix_base_model=True
path =f"{test_player_model_name}_vs_{base_player_model_name}_metrics.json"
# if you want to test the pgm version, add the postfix"-pgm" after the name of the openai models.
# test_player_model_name='gpt-3.5-turbo-pgm'
num_of_game=1
print('>>>>>>>>>>>>>>> We are running Chameleon game')
competition_chameleon = Competition_Chameleon()
competition_chameleon.run(config_dir, non_chameleon_competition, save_dir+'/chameleon', test_player_model_name, base_player_model_name, fix_base_model=fix_base_model, num_of_game=num_of_game)
print('>>>>>>>>>>>>>>> We are running Chameleon game')
competition_chameleon = Competition_Chameleon()
competition_chameleon.run(config_dir, chameleon_competition, save_dir+'/chameleon', test_player_model_name, base_player_model_name,fix_base_model=fix_base_model, num_of_game=num_of_game)
print('>>>>>>>>>>>>>>> We are running undervocer game')
competition_undercover = Competition_Under_Cover()
competition_undercover.run(config_dir, undercover_competition, save_dir+'/undercover', test_player_model_name, base_player_model_name, fix_base_model=fix_base_model, num_of_game=num_of_game)
print('>>>>>>>>>>>>>>> We are running undervocer game')
competition_chameleon = Competition_Under_Cover()
competition_chameleon.run(config_dir, non_undercover_competition, save_dir+'/undercover', test_player_model_name, base_player_model_name, fix_base_model=fix_base_model, num_of_game=num_of_game)
print('>>>>>>>>>>>>>>> We are running airport game')
competition_airportfee = Competition_Airportfee()
competition_airportfee.run(config_dir, airport_competition, save_dir+'/airportfee', test_player_model_name,base_player_model_name, fix_base_model=fix_base_model, num_of_game=num_of_game)
print('>>>>>>>>>>>>>>> We are running Prisoner game')
competition_pirportfee = Competition_Prisoner()
competition_pirportfee.run(config_dir, prisoner_competition, save_dir+'/prisoner', test_player_model_name, base_player_model_name, num_of_game=num_of_game)
print('>>>>>>>>>>>>>>> We are running pulic good game')
competition_pirportfee = Competition_Public_Good()
competition_pirportfee.run(config_dir, public_good_competition, save_dir+'/public_good', test_player_model_name, base_player_model_name, num_of_game=num_of_game)
from metrics_release import Metric
print('>>>>>>>>>>>>>>> Calculating the assessment results')
Metric_cal = Metric(num_of_game=num_of_game)
Metric_cal.metric_calculation(path, result_dir, test_player_model_name,base_player_model_name)
run()