-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathEI4_t4c0s_V2_15.py
633 lines (532 loc) · 30.6 KB
/
EI4_t4c0s_V2_15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from functools import reduce
from typing import Optional
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import numpy as np
import freqtrade.vendor.qtpylib.indicators as qtpylib
import datetime
from technical.util import resample_to_interval, resampled_merge
from datetime import datetime, timedelta
from freqtrade.persistence import Trade
from freqtrade.strategy import stoploss_from_open, merge_informative_pair, DecimalParameter, IntParameter, CategoricalParameter
import technical.indicators as ftt
import math
import logging
logger = logging.getLogger(__name__)
# @Rallipanos # changes by IcHiAT
def EWO(dataframe, ema_length=5, ema2_length=3):
df = dataframe.copy()
ema1 = ta.EMA(df, timeperiod=ema_length)
ema2 = ta.EMA(df, timeperiod=ema2_length)
emadif = (ema1 - ema2) / df['close'] * 100
return emadif
class EI4_t4c0s_V2_15st(IStrategy):
# ROI table:
# minimal_roi = {
# "0": 0.08,
# "20": 0.04,
# "40": 0.032,
# "87": 0.016,
# "201": 0
# }
# Buy hyperspace params:
buy_params = {
"base_nb_candles_buy": 12,
"rsi_buy": 58,
"ewo_high": 3.001,
"ewo_low": -10.289,
"low_offset": 0.987,
"lambo2_ema_14_factor": 0.981,
"lambo2_enabled": True,
"lambo2_rsi_14_limit": 39,
"lambo2_rsi_4_limit": 44,
"buy_adx": 20,
"buy_fastd": 20,
"buy_fastk": 22,
"buy_ema_cofi": 0.98,
"buy_ewo_high": 4.179
}
# Sell hyperspace params:
sell_params = {
"base_nb_candles_sell": 22,
"high_offset": 1.014,
"high_offset_2": 1.01
}
@property
def protections(self):
return [
{
"method": "CooldownPeriod",
"stop_duration_candles": 5
},
{
"method": "MaxDrawdown",
"lookback_period_candles": 48,
"trade_limit": 20,
"stop_duration_candles": 4,
"max_allowed_drawdown": 0.2
},
{
"method": "StoplossGuard",
"lookback_period_candles": 24,
"trade_limit": 4,
"stop_duration_candles": 2,
"only_per_pair": False
},
{
"method": "LowProfitPairs",
"lookback_period_candles": 6,
"trade_limit": 2,
"stop_duration_candles": 60,
"required_profit": 0.02
},
{
"method": "LowProfitPairs",
"lookback_period_candles": 24,
"trade_limit": 4,
"stop_duration_candles": 2,
"required_profit": 0.01
}
]
# ROI table:
minimal_roi = {
"0": 0.99,
}
# Stoploss:
stoploss = -0.99
sl1 = DecimalParameter(-0.013, -0.005, default=-0.013, space='sell', optimize=True)
# SMAOffset
base_nb_candles_buy = IntParameter(8, 30, default=buy_params['base_nb_candles_buy'], space='buy', optimize=False)
base_nb_candles_sell = IntParameter(8, 30, default=sell_params['base_nb_candles_sell'], space='sell', optimize=False)
low_offset = DecimalParameter(0.985, 0.995, default=buy_params['low_offset'], space='buy', optimize=True)
high_offset = DecimalParameter(1.005, 1.015, default=sell_params['high_offset'], space='sell', optimize=True)
high_offset_2 = DecimalParameter(1.010, 1.020, default=sell_params['high_offset_2'], space='sell', optimize=True)
# lambo2
lambo2_ema_14_factor = DecimalParameter(0.975, 0.995, decimals=3, default=buy_params['lambo2_ema_14_factor'], space='buy', optimize=True)
lambo2_rsi_4_limit = IntParameter(30, 60, default=buy_params['lambo2_rsi_4_limit'], space='buy', optimize=True)
lambo2_rsi_14_limit = IntParameter(30, 55, default=buy_params['lambo2_rsi_14_limit'], space='buy', optimize=True)
# Protection
fast_ewo = 50
slow_ewo = 200
rsi_buy = IntParameter(35, 60, default=buy_params['rsi_buy'], space='buy', optimize=True)
move = IntParameter(35, 60, default=48, space='buy', optimize=True)
mms = IntParameter(6, 20, default=12, space='buy', optimize=True)
mml = IntParameter(300, 400, default=360, space='buy', optimize=True)
#cofi
is_optimize_cofi = False
buy_ema_cofi = DecimalParameter(0.96, 0.98, default=0.97 , optimize = is_optimize_cofi)
buy_fastk = IntParameter(20, 30, default=20, optimize = is_optimize_cofi)
buy_fastd = IntParameter(20, 30, default=20, optimize = is_optimize_cofi)
buy_adx = IntParameter(20, 30, default=30, optimize = is_optimize_cofi)
buy_ewo_high = DecimalParameter(2, 12, default=3.553, optimize = is_optimize_cofi)
increment = DecimalParameter(low=1.0005, high=1.001, default=1.0007, decimals=4 ,space='buy', optimize=True, load=True)
use_custom_stoploss = True
process_only_new_candles = True
# Custom Entry
last_entry_price = None
# Unclog
unclog_days = IntParameter(1, 5, default=4, space='sell', optimize=True)
unclog = DecimalParameter(0.01, 0.08, default=0.04, decimals=2, space='sell', optimize=True)
### Trailing Stop ###
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
current_candle = dataframe.iloc[-1].squeeze()
SLT1 = current_candle['move_mean']
SL1 = self.sl1.value
SLT2 = current_candle['move_mean_x']
SL2 = current_candle['move_mean_x'] - current_candle['move_mean']
display_profit = current_profit * 100
slt1 = SLT1 * 100
sl1 = SL1 * 100
slt2 = SLT2 * 100
sl2 = SL2 * 100
if current_candle['max_l'] > .003: #ignore stoploss if setting new highs
if SLT2 is not None and current_profit > SLT2:
self.dp.send_msg(f'*** {pair} *** Profit {display_profit:.2f}% - {slt2:.2f}/{sl2:.2f} activated')
logger.info(f'*** {pair} *** Profit {display_profit:.2f}% - {slt2:.2f}/{sl2:.2f} activated')
return SL2
if SLT1 is not None and current_profit > SLT1:
self.dp.send_msg(f'*** {pair} *** Profit {display_profit:.2f} - {SLT1:.2f}/{SL1:.2f} activated')
logger.info(f'*** {pair} *** Profit {display_profit:.2f}% - {slt1:.2f}/{sl1:.2f} activated')
return SL1
else:
if SLT1 is not None and current_profit > SL1:
self.dp.send_msg(f'*** {pair} *** Profit {display_profit:.2f}% SWINGING FOR THE MOON!!!')
logger.info(f'*** {pair} *** Profit {display_profit:.2f}% SWINGING FOR THE MOON!!!')
return 0.99
return self.stoploss
def custom_entry_price(self, pair: str, trade: Optional['Trade'], current_time: datetime, proposed_rate: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
entry_price = (dataframe['close'].iat[-1] + dataframe['open'].iat[-1] + proposed_rate + proposed_rate) / 4
logger.info(f"{pair} Using Entry Price: {entry_price} | close: {dataframe['close'].iat[-1]} open: {dataframe['open'].iat[-1]} proposed_rate: {proposed_rate}")
# Check if there is a stored last entry price and if it matches the proposed entry price
if self.last_entry_price is not None and abs(entry_price - self.last_entry_price) < 0.0001: # Tolerance for floating-point comparison
entry_price *= self.increment.value # Increment by 0.2%
logger.info(f"{pair} Incremented entry price: {entry_price} based on previous entry price : {self.last_entry_price}.")
# Update the last entry price
self.last_entry_price = entry_price
return entry_price
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
rate: float, time_in_force: str, exit_reason: str,
current_time: datetime, **kwargs) -> bool:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
if exit_reason == 'roi' and (last_candle['max_l'] < 0.003):
return False
# Handle freak events
if exit_reason == 'Down Trend Soon' and trade.calc_profit_ratio(rate) < 0.003:
logger.info(f"{trade.pair} Waiting for Profit")
self.dp.send_msg(f'{trade.pair} Waiting for Profit')
return False
if exit_reason == 'roi' and trade.calc_profit_ratio(rate) < 0.003:
logger.info(f"{trade.pair} ROI is below 0")
self.dp.send_msg(f'{trade.pair} ROI is below 0')
return False
if exit_reason == 'partial_exit' and trade.calc_profit_ratio(rate) < 0:
logger.info(f"{trade.pair} partial exit is below 0")
self.dp.send_msg(f'{trade.pair} partial exit is below 0')
return False
if exit_reason == 'trailing_stop_loss' and trade.calc_profit_ratio(rate) < 0:
logger.info(f"{trade.pair} trailing stop price is below 0")
self.dp.send_msg(f'{trade.pair} trailing stop price is below 0')
return False
return True
def custom_exit(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float, current_profit: float, **kwargs):
# Sell any positions at a loss if they are held for more than 7 days.
if current_profit < -self.unclog.value and (current_time - trade.open_date_utc).days >= self.unclog_days.value:
return 'unclog'
# Sell signal
use_exit_signal = True
exit_profit_only = True
exit_profit_offset = 0.01
ignore_roi_if_entry_signal = False
## Optional order time in force.
order_time_in_force = {
'entry': 'gtc',
'exit': 'gtc'
}
# Optimal timeframe for the strategy
timeframe = '15m'
position_adjustment_enable = False
process_only_new_candles = True
startup_candle_count = 400
plot_config = {
'main_plot': {
'ma_buy': {'color': 'orange'},
'ma_sell': {'color': 'orange'},
},
}
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Calculate all ma_buy values
for val in self.base_nb_candles_buy.range:
dataframe[f'ma_buy_{val}'] = ta.EMA(dataframe, timeperiod=val)
# Calculate all ma_sell values
for val in self.base_nb_candles_sell.range:
dataframe[f'ma_sell_{val}'] = ta.EMA(dataframe, timeperiod=val)
dataframe['ma_lo'] = dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * (self.low_offset.value)
dataframe['ma_hi'] = dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * (self.high_offset.value)
dataframe['ma_hi_2'] = dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * (self.high_offset_2.value)
dataframe['hma_50'] = qtpylib.hull_moving_average(dataframe['close'], window=50)
# HMA-BUY SQUEEZE
dataframe['HMA_SQZ'] = (((dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] - dataframe['hma_50'])
/ dataframe[f'ma_buy_{self.base_nb_candles_buy.value}']) * 100)
dataframe['zero'] = 0
# Elliot
dataframe['EWO'] = EWO(dataframe, self.fast_ewo, self.slow_ewo)
dataframe.loc[dataframe['EWO'] > 0, "EWO_UP"] = dataframe['EWO']
dataframe.loc[dataframe['EWO'] < 0, "EWO_DN"] = dataframe['EWO']
dataframe['EWO_UP'].ffill()
dataframe['EWO_DN'].ffill()
dataframe['EWO_MEAN_UP'] = dataframe['EWO_UP'].mean()
dataframe['EWO_MEAN_DN'] = dataframe['EWO_DN'].mean()
dataframe['EWO_UP_FIB'] = dataframe['EWO_MEAN_UP'] * 1.618
dataframe['EWO_DN_FIB'] = dataframe['EWO_MEAN_DN'] * 1.618
# RSI
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
dataframe['rsi_fast'] = ta.RSI(dataframe, timeperiod=4)
dataframe['rsi_slow'] = ta.RSI(dataframe, timeperiod=20)
#lambo2
dataframe['ema_14'] = ta.EMA(dataframe, timeperiod=14)
dataframe['rsi_4'] = ta.RSI(dataframe, timeperiod=4)
dataframe['rsi_14'] = ta.RSI(dataframe, timeperiod=14)
# # Pump strength
# dataframe['zema_30'] = ftt.dema(dataframe, period=30)
# dataframe['zema_200'] = ftt.dema(dataframe, period=200)
# dataframe['pump_strength'] = (dataframe['zema_30'] - dataframe['zema_200']) / dataframe['zema_30']
# Cofi
stoch_fast = ta.STOCHF(dataframe, 5, 3, 0, 3, 0)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
dataframe['adx'] = ta.ADX(dataframe)
dataframe['ema_8'] = ta.EMA(dataframe, timeperiod=8)
dataframe['OHLC4'] = (dataframe['open'] + dataframe['high'] + dataframe['low'] + dataframe['close']) / 4
# Check how far we are from min and max
dataframe['max'] = dataframe['OHLC4'].rolling(self.mms.value).max() / dataframe['OHLC4'] - 1
dataframe['min'] = abs(dataframe['OHLC4'].rolling(self.mms.value).min() / dataframe['OHLC4'] - 1)
dataframe['max_l'] = dataframe['OHLC4'].rolling(self.mml.value).max() / dataframe['OHLC4'] - 1
dataframe['min_l'] = abs(dataframe['OHLC4'].rolling(self.mml.value).min() / dataframe['OHLC4'] - 1)
# Apply rolling window operation to the 'OHLC4'column
rolling_window = dataframe['OHLC4'].rolling(self.move.value)
rolling_max = rolling_window.max()
rolling_min = rolling_window.min()
# Calculate the peak-to-peak value on the resulting rolling window data
ptp_value = rolling_window.apply(lambda x: np.ptp(x))
# Assign the calculated peak-to-peak value to the DataFrame column
dataframe['move'] = ptp_value / dataframe['OHLC4']
dataframe['move_mean'] = dataframe['move'].mean()
dataframe['move_mean_x'] = dataframe['move'].mean() * 1.6
dataframe['exit_mean'] = rolling_min * (1 + dataframe['move_mean'])
dataframe['exit_mean_x'] = rolling_min * (1 + dataframe['move_mean_x'])
dataframe['enter_mean'] = rolling_max * (1 - dataframe['move_mean'])
dataframe['enter_mean_x'] = rolling_max * (1 - dataframe['move_mean_x'])
dataframe['atr_pcnt'] = (ta.ATR(dataframe, timeperiod=5) / dataframe['OHLC4'])
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
lambo2 = (
(dataframe['close'] < (dataframe['ema_14'] * self.lambo2_ema_14_factor.value)) &
(dataframe['rsi_4'] < int(self.lambo2_rsi_4_limit.value)) &
(dataframe['rsi_14'] < int(self.lambo2_rsi_14_limit.value)) &
(dataframe['atr_pcnt'] > dataframe['min_l']) &
(dataframe['volume'] > 0)
)
dataframe.loc[lambo2, 'enter_long'] = 1
dataframe.loc[lambo2, 'enter_tag'] = 'lambo '
buy1ewo = (
(dataframe['rsi_fast'] < 35 ) &
(dataframe['close'] < dataframe['ma_lo']) &
(dataframe['EWO'] > dataframe['EWO_MEAN_UP']) &
(dataframe['close'] < dataframe['enter_mean_x']) &
(dataframe['close'].shift() < dataframe['enter_mean_x'].shift()) &
(dataframe['rsi'] < self.rsi_buy.value) &
(dataframe['atr_pcnt'] > dataframe['min']) &
(dataframe['volume'] > 0)
)
dataframe.loc[buy1ewo, 'enter_long'] = 1
dataframe.loc[buy1ewo, 'enter_tag'] = 'buy1ewo'
buy2ewo = (
(dataframe['rsi_fast'] < 35) &
(dataframe['close'] < dataframe['ma_lo']) &
(dataframe['EWO'] < dataframe['EWO_DN_FIB']) &
(dataframe['atr_pcnt'] > dataframe['min']) &
(dataframe['volume'] > 0)
)
dataframe.loc[buy2ewo, 'enter_long'] = 1
dataframe.loc[buy2ewo, 'enter_tag'] = 'buy2ewo'
is_cofi = (
(dataframe['open'] < dataframe['ema_8'] * self.buy_ema_cofi.value) &
(qtpylib.crossed_above(dataframe['fastk'], dataframe['fastd'])) &
(dataframe['fastk'] < self.buy_fastk.value) &
(dataframe['fastd'] < self.buy_fastd.value) &
(dataframe['adx'] > self.buy_adx.value) &
(dataframe['EWO'] > dataframe['EWO_MEAN_UP']) &
(dataframe['atr_pcnt'] > dataframe['min']) &
(dataframe['volume'] > 0)
)
dataframe.loc[is_cofi, 'enter_long'] = 1
dataframe.loc[is_cofi, 'enter_tag'] = 'cofi'
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
condition5 = (
(dataframe['close'] > dataframe['hma_50']) &
(dataframe['close'] > dataframe['ma_hi_2']) &
(dataframe['close'] > dataframe['exit_mean_x']) &
(dataframe['rsi'] > 50 ) &
(dataframe['volume'] > 0 ) &
(dataframe['rsi_fast']>dataframe['rsi_slow'])
)
dataframe.loc[condition5, 'exit_long'] = 1
dataframe.loc[condition5, 'exit_tag'] = 'Close > Offset Hi 2'
condition6 = (
(dataframe['close'] < dataframe['hma_50']) &
(dataframe['close'] > dataframe['ma_hi']) &
(dataframe['volume'] > 0) &
(dataframe['rsi_fast']>dataframe['rsi_slow'])
)
dataframe.loc[condition6, 'exit_long'] = 1
dataframe.loc[condition6, 'exit_tag'] = 'Close > Offset Hi 1'
return dataframe
def pct_change(a, b):
return (b - a) / a
class EI4_t4c0s_V2_15(EI4_t4c0s_V2_15st):
INTERFACE_VERSION = 3
# Original idea by @MukavaValkku, code by @tirail and @stash86
#
# This class is designed to inherit from yours and starts trailing buy with your buy signals
# Trailing buy starts at any buy signal and will move to next candles if the trailing still active
# Trailing buy stops with BUY if : price decreases and rises again more than trailing_buy_offset
# Trailing buy stops with NO BUY : current price is > initial price * (1 + trailing_buy_max) OR custom_sell tag
# IT IS NOT COMPATIBLE WITH BACKTEST/HYPEROPT
#
process_only_new_candles = True
custom_info_trail_buy = dict()
# Trailing buy parameters
trailing_buy_order_enabled = True
trailing_expire_seconds = 1800
# If the current candle goes above min_uptrend_trailing_profit % before trailing_expire_seconds_uptrend seconds, buy the coin
trailing_buy_uptrend_enabled = True
trailing_expire_seconds_uptrend = 1800
min_uptrend_trailing_profit = 0.005
debug_mode = True
trailing_buy_max_stop = 0.008 # stop trailing buy if current_price > starting_price * (1+trailing_buy_max_stop)
trailing_buy_max_buy = 0.01 # buy if price between uplimit (=min of serie (current_price * (1 + trailing_buy_offset())) and (start_price * 1+trailing_buy_max_buy))
init_trailing_dict = {'trailing_buy_order_started': False, 'trailing_buy_order_uplimit': 0, 'start_trailing_price': 0, 'enter_tag': None, 'start_trailing_time': None, 'offset': 0, 'allow_trailing': False}
def trailing_buy(self, pair, reinit=False):
# returns trailing buy info for pair (init if necessary)
if not pair in self.custom_info_trail_buy:
self.custom_info_trail_buy[pair] = dict()
if reinit or not 'trailing_buy' in self.custom_info_trail_buy[pair]:
self.custom_info_trail_buy[pair]['trailing_buy'] = self.init_trailing_dict.copy()
return self.custom_info_trail_buy[pair]['trailing_buy']
def trailing_buy_info(self, pair: str, current_price: float):
# current_time live, dry run
current_time = datetime.now(timezone.utc)
if not self.debug_mode:
return
trailing_buy = self.trailing_buy(pair)
duration = 0
try:
duration = current_time - trailing_buy['start_trailing_time']
except TypeError:
duration = 0
finally:
logger.info(f"pair: {pair} : start: {trailing_buy['start_trailing_price']:.4f}, duration: {duration}, current: {current_price:.4f}, uplimit: {trailing_buy['trailing_buy_order_uplimit']:.4f}, profit: {self.current_trailing_profit_ratio(pair, current_price) * 100:.2f}%, offset: {trailing_buy['offset']}")
def current_trailing_profit_ratio(self, pair: str, current_price: float) -> float:
trailing_buy = self.trailing_buy(pair)
if trailing_buy['trailing_buy_order_started']:
return (trailing_buy['start_trailing_price'] - current_price) / trailing_buy['start_trailing_price']
else:
return 0
def trailing_buy_offset(self, dataframe, pair: str, current_price: float):
# return rebound limit before a buy in % of initial price, function of current price
# return None to stop trailing buy (will start again at next buy signal)
# return 'forcebuy' to force immediate buy
# (example with 0.5%. initial price : 100 (uplimit is 100.5), 2nd price : 99 (no buy, uplimit updated to 99.5), 3price 98 (no buy uplimit updated to 98.5), 4th price 99 -> BUY
current_trailing_profit_ratio = self.current_trailing_profit_ratio(pair, current_price)
default_offset = 0.005
trailing_buy = self.trailing_buy(pair)
if not trailing_buy['trailing_buy_order_started']:
return default_offset
# example with duration and indicators
# dry run, live only
last_candle = dataframe.iloc[-1]
current_time = datetime.now(timezone.utc)
trailing_duration = current_time - trailing_buy['start_trailing_time']
if trailing_duration.total_seconds() > self.trailing_expire_seconds:
if current_trailing_profit_ratio > 0 and last_candle['enter_long'] == 1:
# more than 1h, price under first signal, buy signal still active -> buy
return 'forcebuy'
else:
# wait for next signal
return None
elif self.trailing_buy_uptrend_enabled and trailing_duration.total_seconds() < self.trailing_expire_seconds_uptrend and (current_trailing_profit_ratio < -1 * self.min_uptrend_trailing_profit):
# less than 90s and price is rising, buy
return 'forcebuy'
if current_trailing_profit_ratio < 0:
# current price is higher than initial price
return default_offset
trailing_buy_offset = {0.06: 0.02, 0.03: 0.01, 0: default_offset}
for key in trailing_buy_offset:
if current_trailing_profit_ratio > key:
return trailing_buy_offset[key]
return default_offset
# end of trailing buy parameters
# -----------------------------------------------------
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe = super().populate_indicators(dataframe, metadata)
self.trailing_buy(metadata['pair'])
return dataframe
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float, time_in_force: str, **kwargs) -> bool:
val = super().confirm_trade_entry(pair, order_type, amount, rate, time_in_force, **kwargs)
if val:
if self.trailing_buy_order_enabled and self.config['runmode'].value in ('live', 'dry_run'):
val = False
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
if len(dataframe) >= 1:
last_candle = dataframe.iloc[-1].squeeze()
current_price = rate
trailing_buy = self.trailing_buy(pair)
trailing_buy_offset = self.trailing_buy_offset(dataframe, pair, current_price)
if trailing_buy['allow_trailing']:
if not trailing_buy['trailing_buy_order_started'] and last_candle['enter_long'] == 1:
# start trailing buy
# self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_started'] = True
# self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit'] = last_candle['close']
# self.custom_info_trail_buy[pair]['trailing_buy']['start_trailing_price'] = last_candle['close']
# self.custom_info_trail_buy[pair]['trailing_buy']['buy_tag'] = f"initial_buy_tag (strat trail price {last_candle['close']})"
# self.custom_info_trail_buy[pair]['trailing_buy']['start_trailing_time'] = datetime.now(timezone.utc)
# self.custom_info_trail_buy[pair]['trailing_buy']['offset'] = 0
trailing_buy['trailing_buy_order_started'] = True
trailing_buy['trailing_buy_order_uplimit'] = last_candle['close']
trailing_buy['start_trailing_price'] = last_candle['close']
trailing_buy['enter_tag'] = last_candle['enter_tag']
trailing_buy['start_trailing_time'] = datetime.now(timezone.utc)
trailing_buy['offset'] = 0
self.trailing_buy_info(pair, current_price)
logger.info(f"start trailing buy for {pair} at {last_candle['close']}")
elif trailing_buy['trailing_buy_order_started']:
if trailing_buy_offset == 'forcebuy':
# buy in custom conditions
val = True
ratio = '%.2f' % (self.current_trailing_profit_ratio(pair, current_price) * 100)
self.trailing_buy_info(pair, current_price)
logger.info(f'price OK for {pair} ({ratio} %, {current_price}), order may not be triggered if all slots are full')
elif trailing_buy_offset is None:
# stop trailing buy custom conditions
self.trailing_buy(pair, reinit=True)
logger.info(f'STOP trailing buy for {pair} because "trailing buy offset" returned None')
elif current_price < trailing_buy['trailing_buy_order_uplimit']:
# update uplimit
old_uplimit = trailing_buy['trailing_buy_order_uplimit']
self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit'] = min(current_price * (1 + trailing_buy_offset), self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit'])
self.custom_info_trail_buy[pair]['trailing_buy']['offset'] = trailing_buy_offset
self.trailing_buy_info(pair, current_price)
logger.info(f"update trailing buy for {pair} at {old_uplimit} -> {self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit']}")
elif current_price < trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_buy):
# buy ! current price > uplimit && lower thant starting price
val = True
ratio = '%.2f' % (self.current_trailing_profit_ratio(pair, current_price) * 100)
self.trailing_buy_info(pair, current_price)
logger.info(f"current price ({current_price}) > uplimit ({trailing_buy['trailing_buy_order_uplimit']}) and lower than starting price price ({trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_buy)}). OK for {pair} ({ratio} %), order may not be triggered if all slots are full")
elif current_price > trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_stop):
# stop trailing buy because price is too high
self.trailing_buy(pair, reinit=True)
self.trailing_buy_info(pair, current_price)
logger.info(f'STOP trailing buy for {pair} because of the price is higher than starting price * {1 + self.trailing_buy_max_stop}')
else:
# uplimit > current_price > max_price, continue trailing and wait for the price to go down
self.trailing_buy_info(pair, current_price)
logger.info(f'price too high for {pair} !')
else:
logger.info(f'Wait for next buy signal for {pair}')
if val == True:
self.trailing_buy_info(pair, rate)
self.trailing_buy(pair, reinit=True)
logger.info(f'STOP trailing buy for {pair} because I buy it')
return val
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe = super().populate_entry_trend(dataframe, metadata)
if self.trailing_buy_order_enabled and self.config['runmode'].value in ('live', 'dry_run'):
last_candle = dataframe.iloc[-1].squeeze()
trailing_buy = self.trailing_buy(metadata['pair'])
if last_candle['enter_long'] == 1:
if not trailing_buy['trailing_buy_order_started']:
open_trades = Trade.get_trades([Trade.pair == metadata['pair'], Trade.is_open.is_(True)]).all()
if not open_trades:
logger.info(f"Set 'allow_trailing' to True for {metadata['pair']} to start trailing!!!")
# self.custom_info_trail_buy[metadata['pair']]['trailing_buy']['allow_trailing'] = True
trailing_buy['allow_trailing'] = True
initial_buy_tag = last_candle['enter_tag'] if 'enter_tag' in last_candle else 'buy signal'
dataframe.loc[:, 'enter_tag'] = f"{initial_buy_tag} (start trail price {last_candle['close']})"
elif trailing_buy['trailing_buy_order_started'] == True:
logger.info(f"Continue trailing for {metadata['pair']}. Manually trigger buy signal!!")
dataframe.loc[:, 'enter_long'] = 1
dataframe.loc[:, 'enter_tag'] = trailing_buy['enter_tag']
# dataframe['buy'] = 1
return dataframe