forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hugetlb.c
3851 lines (3331 loc) · 100 KB
/
hugetlb.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Generic hugetlb support.
* (C) Nadia Yvette Chambers, April 2004
*/
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/mmu_notifier.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/compiler.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <linux/bootmem.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/page-isolation.h>
#include <linux/jhash.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/tlb.h>
#include <linux/io.h>
#include <linux/hugetlb.h>
#include <linux/hugetlb_cgroup.h>
#include <linux/node.h>
#include "internal.h"
int hugepages_treat_as_movable;
int hugetlb_max_hstate __read_mostly;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
__initdata LIST_HEAD(huge_boot_pages);
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
static unsigned long __initdata default_hstate_size;
/*
* Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
* free_huge_pages, and surplus_huge_pages.
*/
DEFINE_SPINLOCK(hugetlb_lock);
/*
* Serializes faults on the same logical page. This is used to
* prevent spurious OOMs when the hugepage pool is fully utilized.
*/
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
bool free = (spool->count == 0) && (spool->used_hpages == 0);
spin_unlock(&spool->lock);
/* If no pages are used, and no other handles to the subpool
* remain, free the subpool the subpool remain */
if (free)
kfree(spool);
}
struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
struct hugepage_subpool *spool;
spool = kmalloc(sizeof(*spool), GFP_KERNEL);
if (!spool)
return NULL;
spin_lock_init(&spool->lock);
spool->count = 1;
spool->max_hpages = nr_blocks;
spool->used_hpages = 0;
return spool;
}
void hugepage_put_subpool(struct hugepage_subpool *spool)
{
spin_lock(&spool->lock);
BUG_ON(!spool->count);
spool->count--;
unlock_or_release_subpool(spool);
}
static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
long delta)
{
int ret = 0;
if (!spool)
return 0;
spin_lock(&spool->lock);
if ((spool->used_hpages + delta) <= spool->max_hpages) {
spool->used_hpages += delta;
} else {
ret = -ENOMEM;
}
spin_unlock(&spool->lock);
return ret;
}
static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
long delta)
{
if (!spool)
return;
spin_lock(&spool->lock);
spool->used_hpages -= delta;
/* If hugetlbfs_put_super couldn't free spool due to
* an outstanding quota reference, free it now. */
unlock_or_release_subpool(spool);
}
static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
return HUGETLBFS_SB(inode->i_sb)->spool;
}
static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
return subpool_inode(file_inode(vma->vm_file));
}
/*
* Region tracking -- allows tracking of reservations and instantiated pages
* across the pages in a mapping.
*
* The region data structures are embedded into a resv_map and
* protected by a resv_map's lock
*/
struct file_region {
struct list_head link;
long from;
long to;
};
static long region_add(struct resv_map *resv, long f, long t)
{
struct list_head *head = &resv->regions;
struct file_region *rg, *nrg, *trg;
spin_lock(&resv->lock);
/* Locate the region we are either in or before. */
list_for_each_entry(rg, head, link)
if (f <= rg->to)
break;
/* Round our left edge to the current segment if it encloses us. */
if (f > rg->from)
f = rg->from;
/* Check for and consume any regions we now overlap with. */
nrg = rg;
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
if (&rg->link == head)
break;
if (rg->from > t)
break;
/* If this area reaches higher then extend our area to
* include it completely. If this is not the first area
* which we intend to reuse, free it. */
if (rg->to > t)
t = rg->to;
if (rg != nrg) {
list_del(&rg->link);
kfree(rg);
}
}
nrg->from = f;
nrg->to = t;
spin_unlock(&resv->lock);
return 0;
}
static long region_chg(struct resv_map *resv, long f, long t)
{
struct list_head *head = &resv->regions;
struct file_region *rg, *nrg = NULL;
long chg = 0;
retry:
spin_lock(&resv->lock);
/* Locate the region we are before or in. */
list_for_each_entry(rg, head, link)
if (f <= rg->to)
break;
/* If we are below the current region then a new region is required.
* Subtle, allocate a new region at the position but make it zero
* size such that we can guarantee to record the reservation. */
if (&rg->link == head || t < rg->from) {
if (!nrg) {
spin_unlock(&resv->lock);
nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
if (!nrg)
return -ENOMEM;
nrg->from = f;
nrg->to = f;
INIT_LIST_HEAD(&nrg->link);
goto retry;
}
list_add(&nrg->link, rg->link.prev);
chg = t - f;
goto out_nrg;
}
/* Round our left edge to the current segment if it encloses us. */
if (f > rg->from)
f = rg->from;
chg = t - f;
/* Check for and consume any regions we now overlap with. */
list_for_each_entry(rg, rg->link.prev, link) {
if (&rg->link == head)
break;
if (rg->from > t)
goto out;
/* We overlap with this area, if it extends further than
* us then we must extend ourselves. Account for its
* existing reservation. */
if (rg->to > t) {
chg += rg->to - t;
t = rg->to;
}
chg -= rg->to - rg->from;
}
out:
spin_unlock(&resv->lock);
/* We already know we raced and no longer need the new region */
kfree(nrg);
return chg;
out_nrg:
spin_unlock(&resv->lock);
return chg;
}
static long region_truncate(struct resv_map *resv, long end)
{
struct list_head *head = &resv->regions;
struct file_region *rg, *trg;
long chg = 0;
spin_lock(&resv->lock);
/* Locate the region we are either in or before. */
list_for_each_entry(rg, head, link)
if (end <= rg->to)
break;
if (&rg->link == head)
goto out;
/* If we are in the middle of a region then adjust it. */
if (end > rg->from) {
chg = rg->to - end;
rg->to = end;
rg = list_entry(rg->link.next, typeof(*rg), link);
}
/* Drop any remaining regions. */
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
if (&rg->link == head)
break;
chg += rg->to - rg->from;
list_del(&rg->link);
kfree(rg);
}
out:
spin_unlock(&resv->lock);
return chg;
}
static long region_count(struct resv_map *resv, long f, long t)
{
struct list_head *head = &resv->regions;
struct file_region *rg;
long chg = 0;
spin_lock(&resv->lock);
/* Locate each segment we overlap with, and count that overlap. */
list_for_each_entry(rg, head, link) {
long seg_from;
long seg_to;
if (rg->to <= f)
continue;
if (rg->from >= t)
break;
seg_from = max(rg->from, f);
seg_to = min(rg->to, t);
chg += seg_to - seg_from;
}
spin_unlock(&resv->lock);
return chg;
}
/*
* Convert the address within this vma to the page offset within
* the mapping, in pagecache page units; huge pages here.
*/
static pgoff_t vma_hugecache_offset(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
{
return ((address - vma->vm_start) >> huge_page_shift(h)) +
(vma->vm_pgoff >> huge_page_order(h));
}
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address)
{
return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
/*
* Return the size of the pages allocated when backing a VMA. In the majority
* cases this will be same size as used by the page table entries.
*/
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
struct hstate *hstate;
if (!is_vm_hugetlb_page(vma))
return PAGE_SIZE;
hstate = hstate_vma(vma);
return 1UL << huge_page_shift(hstate);
}
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
/*
* Return the page size being used by the MMU to back a VMA. In the majority
* of cases, the page size used by the kernel matches the MMU size. On
* architectures where it differs, an architecture-specific version of this
* function is required.
*/
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
return vma_kernel_pagesize(vma);
}
#endif
/*
* Flags for MAP_PRIVATE reservations. These are stored in the bottom
* bits of the reservation map pointer, which are always clear due to
* alignment.
*/
#define HPAGE_RESV_OWNER (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
/*
* These helpers are used to track how many pages are reserved for
* faults in a MAP_PRIVATE mapping. Only the process that called mmap()
* is guaranteed to have their future faults succeed.
*
* With the exception of reset_vma_resv_huge_pages() which is called at fork(),
* the reserve counters are updated with the hugetlb_lock held. It is safe
* to reset the VMA at fork() time as it is not in use yet and there is no
* chance of the global counters getting corrupted as a result of the values.
*
* The private mapping reservation is represented in a subtly different
* manner to a shared mapping. A shared mapping has a region map associated
* with the underlying file, this region map represents the backing file
* pages which have ever had a reservation assigned which this persists even
* after the page is instantiated. A private mapping has a region map
* associated with the original mmap which is attached to all VMAs which
* reference it, this region map represents those offsets which have consumed
* reservation ie. where pages have been instantiated.
*/
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
return (unsigned long)vma->vm_private_data;
}
static void set_vma_private_data(struct vm_area_struct *vma,
unsigned long value)
{
vma->vm_private_data = (void *)value;
}
struct resv_map *resv_map_alloc(void)
{
struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
if (!resv_map)
return NULL;
kref_init(&resv_map->refs);
spin_lock_init(&resv_map->lock);
INIT_LIST_HEAD(&resv_map->regions);
return resv_map;
}
void resv_map_release(struct kref *ref)
{
struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
/* Clear out any active regions before we release the map. */
region_truncate(resv_map, 0);
kfree(resv_map);
}
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
return inode->i_mapping->private_data;
}
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
if (vma->vm_flags & VM_MAYSHARE) {
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
return inode_resv_map(inode);
} else {
return (struct resv_map *)(get_vma_private_data(vma) &
~HPAGE_RESV_MASK);
}
}
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
set_vma_private_data(vma, (get_vma_private_data(vma) &
HPAGE_RESV_MASK) | (unsigned long)map);
}
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
set_vma_private_data(vma, get_vma_private_data(vma) | flags);
}
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
return (get_vma_private_data(vma) & flag) != 0;
}
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
if (!(vma->vm_flags & VM_MAYSHARE))
vma->vm_private_data = (void *)0;
}
/* Returns true if the VMA has associated reserve pages */
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
{
if (vma->vm_flags & VM_NORESERVE) {
/*
* This address is already reserved by other process(chg == 0),
* so, we should decrement reserved count. Without decrementing,
* reserve count remains after releasing inode, because this
* allocated page will go into page cache and is regarded as
* coming from reserved pool in releasing step. Currently, we
* don't have any other solution to deal with this situation
* properly, so add work-around here.
*/
if (vma->vm_flags & VM_MAYSHARE && chg == 0)
return 1;
else
return 0;
}
/* Shared mappings always use reserves */
if (vma->vm_flags & VM_MAYSHARE)
return 1;
/*
* Only the process that called mmap() has reserves for
* private mappings.
*/
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
return 1;
return 0;
}
static void enqueue_huge_page(struct hstate *h, struct page *page)
{
int nid = page_to_nid(page);
list_move(&page->lru, &h->hugepage_freelists[nid]);
h->free_huge_pages++;
h->free_huge_pages_node[nid]++;
}
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
if (!is_migrate_isolate_page(page))
break;
/*
* if 'non-isolated free hugepage' not found on the list,
* the allocation fails.
*/
if (&h->hugepage_freelists[nid] == &page->lru)
return NULL;
list_move(&page->lru, &h->hugepage_activelist);
set_page_refcounted(page);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
return page;
}
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
if (hugepages_treat_as_movable || hugepage_migration_supported(h))
return GFP_HIGHUSER_MOVABLE;
else
return GFP_HIGHUSER;
}
static struct page *dequeue_huge_page_vma(struct hstate *h,
struct vm_area_struct *vma,
unsigned long address, int avoid_reserve,
long chg)
{
struct page *page = NULL;
struct mempolicy *mpol;
nodemask_t *nodemask;
struct zonelist *zonelist;
struct zone *zone;
struct zoneref *z;
unsigned int cpuset_mems_cookie;
/*
* A child process with MAP_PRIVATE mappings created by their parent
* have no page reserves. This check ensures that reservations are
* not "stolen". The child may still get SIGKILLed
*/
if (!vma_has_reserves(vma, chg) &&
h->free_huge_pages - h->resv_huge_pages == 0)
goto err;
/* If reserves cannot be used, ensure enough pages are in the pool */
if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
goto err;
retry_cpuset:
cpuset_mems_cookie = read_mems_allowed_begin();
zonelist = huge_zonelist(vma, address,
htlb_alloc_mask(h), &mpol, &nodemask);
for_each_zone_zonelist_nodemask(zone, z, zonelist,
MAX_NR_ZONES - 1, nodemask) {
if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
page = dequeue_huge_page_node(h, zone_to_nid(zone));
if (page) {
if (avoid_reserve)
break;
if (!vma_has_reserves(vma, chg))
break;
SetPagePrivate(page);
h->resv_huge_pages--;
break;
}
}
}
mpol_cond_put(mpol);
if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset;
return page;
err:
return NULL;
}
/*
* common helper functions for hstate_next_node_to_{alloc|free}.
* We may have allocated or freed a huge page based on a different
* nodes_allowed previously, so h->next_node_to_{alloc|free} might
* be outside of *nodes_allowed. Ensure that we use an allowed
* node for alloc or free.
*/
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
nid = next_node(nid, *nodes_allowed);
if (nid == MAX_NUMNODES)
nid = first_node(*nodes_allowed);
VM_BUG_ON(nid >= MAX_NUMNODES);
return nid;
}
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
if (!node_isset(nid, *nodes_allowed))
nid = next_node_allowed(nid, nodes_allowed);
return nid;
}
/*
* returns the previously saved node ["this node"] from which to
* allocate a persistent huge page for the pool and advance the
* next node from which to allocate, handling wrap at end of node
* mask.
*/
static int hstate_next_node_to_alloc(struct hstate *h,
nodemask_t *nodes_allowed)
{
int nid;
VM_BUG_ON(!nodes_allowed);
nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
return nid;
}
/*
* helper for free_pool_huge_page() - return the previously saved
* node ["this node"] from which to free a huge page. Advance the
* next node id whether or not we find a free huge page to free so
* that the next attempt to free addresses the next node.
*/
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
int nid;
VM_BUG_ON(!nodes_allowed);
nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
return nid;
}
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
for (nr_nodes = nodes_weight(*mask); \
nr_nodes > 0 && \
((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
nr_nodes--)
#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
for (nr_nodes = nodes_weight(*mask); \
nr_nodes > 0 && \
((node = hstate_next_node_to_free(hs, mask)) || 1); \
nr_nodes--)
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
unsigned long order)
{
int i;
int nr_pages = 1 << order;
struct page *p = page + 1;
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
__ClearPageTail(p);
set_page_refcounted(p);
p->first_page = NULL;
}
set_compound_order(page, 0);
__ClearPageHead(page);
}
static void free_gigantic_page(struct page *page, unsigned order)
{
free_contig_range(page_to_pfn(page), 1 << order);
}
static int __alloc_gigantic_page(unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long end_pfn = start_pfn + nr_pages;
return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}
static bool pfn_range_valid_gigantic(unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long i, end_pfn = start_pfn + nr_pages;
struct page *page;
for (i = start_pfn; i < end_pfn; i++) {
if (!pfn_valid(i))
return false;
page = pfn_to_page(i);
if (PageReserved(page))
return false;
if (page_count(page) > 0)
return false;
if (PageHuge(page))
return false;
}
return true;
}
static bool zone_spans_last_pfn(const struct zone *zone,
unsigned long start_pfn, unsigned long nr_pages)
{
unsigned long last_pfn = start_pfn + nr_pages - 1;
return zone_spans_pfn(zone, last_pfn);
}
static struct page *alloc_gigantic_page(int nid, unsigned order)
{
unsigned long nr_pages = 1 << order;
unsigned long ret, pfn, flags;
struct zone *z;
z = NODE_DATA(nid)->node_zones;
for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
spin_lock_irqsave(&z->lock, flags);
pfn = ALIGN(z->zone_start_pfn, nr_pages);
while (zone_spans_last_pfn(z, pfn, nr_pages)) {
if (pfn_range_valid_gigantic(pfn, nr_pages)) {
/*
* We release the zone lock here because
* alloc_contig_range() will also lock the zone
* at some point. If there's an allocation
* spinning on this lock, it may win the race
* and cause alloc_contig_range() to fail...
*/
spin_unlock_irqrestore(&z->lock, flags);
ret = __alloc_gigantic_page(pfn, nr_pages);
if (!ret)
return pfn_to_page(pfn);
spin_lock_irqsave(&z->lock, flags);
}
pfn += nr_pages;
}
spin_unlock_irqrestore(&z->lock, flags);
}
return NULL;
}
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);
static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
struct page *page;
page = alloc_gigantic_page(nid, huge_page_order(h));
if (page) {
prep_compound_gigantic_page(page, huge_page_order(h));
prep_new_huge_page(h, page, nid);
}
return page;
}
static int alloc_fresh_gigantic_page(struct hstate *h,
nodemask_t *nodes_allowed)
{
struct page *page = NULL;
int nr_nodes, node;
for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
page = alloc_fresh_gigantic_page_node(h, node);
if (page)
return 1;
}
return 0;
}
static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
nodemask_t *nodes_allowed) { return 0; }
#endif
static void update_and_free_page(struct hstate *h, struct page *page)
{
int i;
if (hstate_is_gigantic(h) && !gigantic_page_supported())
return;
h->nr_huge_pages--;
h->nr_huge_pages_node[page_to_nid(page)]--;
for (i = 0; i < pages_per_huge_page(h); i++) {
page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1 << PG_referenced | 1 << PG_dirty |
1 << PG_active | 1 << PG_private |
1 << PG_writeback);
}
VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
set_compound_page_dtor(page, NULL);
set_page_refcounted(page);
if (hstate_is_gigantic(h)) {
destroy_compound_gigantic_page(page, huge_page_order(h));
free_gigantic_page(page, huge_page_order(h));
} else {
arch_release_hugepage(page);
__free_pages(page, huge_page_order(h));
}
}
struct hstate *size_to_hstate(unsigned long size)
{
struct hstate *h;
for_each_hstate(h) {
if (huge_page_size(h) == size)
return h;
}
return NULL;
}
void free_huge_page(struct page *page)
{
/*
* Can't pass hstate in here because it is called from the
* compound page destructor.
*/
struct hstate *h = page_hstate(page);
int nid = page_to_nid(page);
struct hugepage_subpool *spool =
(struct hugepage_subpool *)page_private(page);
bool restore_reserve;
set_page_private(page, 0);
page->mapping = NULL;
BUG_ON(page_count(page));
BUG_ON(page_mapcount(page));
restore_reserve = PagePrivate(page);
ClearPagePrivate(page);
spin_lock(&hugetlb_lock);
hugetlb_cgroup_uncharge_page(hstate_index(h),
pages_per_huge_page(h), page);
if (restore_reserve)
h->resv_huge_pages++;
if (h->surplus_huge_pages_node[nid]) {
/* remove the page from active list */
list_del(&page->lru);
update_and_free_page(h, page);
h->surplus_huge_pages--;
h->surplus_huge_pages_node[nid]--;
} else {
arch_clear_hugepage_flags(page);
enqueue_huge_page(h, page);
}
spin_unlock(&hugetlb_lock);
hugepage_subpool_put_pages(spool, 1);
}
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
INIT_LIST_HEAD(&page->lru);
set_compound_page_dtor(page, free_huge_page);
spin_lock(&hugetlb_lock);
set_hugetlb_cgroup(page, NULL);
h->nr_huge_pages++;
h->nr_huge_pages_node[nid]++;
spin_unlock(&hugetlb_lock);
put_page(page); /* free it into the hugepage allocator */
}
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
struct page *p = page + 1;
/* we rely on prep_new_huge_page to set the destructor */
set_compound_order(page, order);
__SetPageHead(page);
__ClearPageReserved(page);
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
__SetPageTail(p);
/*
* For gigantic hugepages allocated through bootmem at
* boot, it's safer to be consistent with the not-gigantic
* hugepages and clear the PG_reserved bit from all tail pages
* too. Otherwse drivers using get_user_pages() to access tail
* pages may get the reference counting wrong if they see
* PG_reserved set on a tail page (despite the head page not
* having PG_reserved set). Enforcing this consistency between
* head and tail pages allows drivers to optimize away a check
* on the head page when they need know if put_page() is needed
* after get_user_pages().
*/
__ClearPageReserved(p);
set_page_count(p, 0);
p->first_page = page;
}
}
/*
* PageHuge() only returns true for hugetlbfs pages, but not for normal or
* transparent huge pages. See the PageTransHuge() documentation for more
* details.
*/
int PageHuge(struct page *page)
{
if (!PageCompound(page))
return 0;
page = compound_head(page);
return get_compound_page_dtor(page) == free_huge_page;
}
EXPORT_SYMBOL_GPL(PageHuge);
/*
* PageHeadHuge() only returns true for hugetlbfs head page, but not for
* normal or transparent huge pages.
*/
int PageHeadHuge(struct page *page_head)
{
if (!PageHead(page_head))
return 0;
return get_compound_page_dtor(page_head) == free_huge_page;
}
pgoff_t __basepage_index(struct page *page)
{
struct page *page_head = compound_head(page);
pgoff_t index = page_index(page_head);
unsigned long compound_idx;
if (!PageHuge(page_head))
return page_index(page);
if (compound_order(page_head) >= MAX_ORDER)
compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
else
compound_idx = page - page_head;
return (index << compound_order(page_head)) + compound_idx;
}
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
page = alloc_pages_exact_node(nid,
htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN,
huge_page_order(h));
if (page) {
if (arch_prepare_hugepage(page)) {
__free_pages(page, huge_page_order(h));
return NULL;
}
prep_new_huge_page(h, page, nid);
}
return page;
}